
á````jƒ````fÉ````ã````dG á`````̀∏`````̀Mô`````̀ŸG

ÖdÉ```£dG ÜÉ``à`c

∫ qhC’G Aõ÷G



ÖdÉ£dG ÜÉàc

اللجنة الإشرافية لدراسة ومواءمة سلسلة كتب العلوم

ا) أ. ليلى علي حسين الوهيب (رئيسً
أ. فتوح عبد االله طاهر الشمالي أ. مصطفى محمد مصطفى علي

أ. تهاني ذعار المطيري أ. سعاد عبد العزيز الرشود

الطبعة الثانية

١٤٤١ - ١٤٤٢
٢٠٢٠ - ٢٠٢١

هـ
م

وزارة التربية

حقوق التأليف والطبع والنشر محفوظة لوزارة التربية ـ قطاع البحوث التربوية والمناهج
إدارة تطوير المناهج

∫qhC’G Aõ÷G

1446 هـ
2024 - 2025م



ذات السلاسل - الكويت

أودع بمكتبة الوزارة تحت رقم (٣٠٧) بتاريخ  ٢٦ / ١٠ /٢٠١٥م

٢٠٢٢ - ٢٠٢٣ م
٢٠٢٣ - ٢٠٢٤ م
٢٠٢٤ - ٢٠٢٥ م

مطابع المجموعة الدولية لاعمال الطباعة

القناة التربوية�شاركنا بتقييم مناهجناالكتاب كاملًا



H.H. Sheikh Meshal AL-Ahmad Al-Jaber Al-Sabah
Amir Of The State Of Kuwait

POSTER 48x65 with cadre cm.indd   1 12/28/23   9:44 AM





H. H. Sheikh Sabah Khaled Al-Hamad Al-Sabah
Crown Prince Of The State Of Kuwait

Amir Of The State Of Kuwait
crown prince.indd   1 6/6/24   6:48 PM





á```````eó`≤e

الحمدالله رب العالمين، والصلاة والسلام على سيد المرسلين، محمد بن عبداالله وصحبه 
أجمعين.

إلى جملة  ذلك  في  استندت  المناهج،  تطوير  التربية في عملية  وزارة  عندما شرعت 
وارتباط  الدولة  راعت متطلبات  والمهنية، حيث  والفنية  العلمية  والمرتكزات  الأسس  من 
ذلك بسوق العمل، وحاجات المتعلمين والتطور المعرفي والعلمي، بالإضافة إلى جملة من 
وغيرها،  والتكنولوجي  والاقتصادي  والاجتماعي  القيمي  بالتحدي  تمثلت  التي  التحديات 
وإن كنا ندرك أن هذه الجوانب لها صلة وثيقة بالنظام التعليمي بشكل عام وليس المناهج 

بشكل خاص.
ومما يجب التأكيد عليه، أن المنهج عبارة عن كم الخبرات التربوية والتعليمية التي تُقدم 
ا بعمليات التخطط والتنفيذ، والتي في محصلتها النهائية  للمتعلم، وهذا يرتبط أيضً
أهم  من  الدراسية  المناهج  بناء  أصبحت عملية  وعليه  التربوية،  الأهداف  لتحقيق  تأتي 
مكونات النظام التعليمي، لأنها تأتي في جانبين مهمين لقياس كفاءة النظام التعليمي، 
ا أو معيارًا من معايير كفاءته من  فهي من جهة تمثل أحد المدخلات الأساسية ومقياسً
جهة أخرى، عدا أن المناهج تدخل في عملية إنماء شخصية المتعلم في جميع جوانبها 

الجسمية والعقلية والوجدانية والروحية والاجتماعية.
عملية  في  نبدأ  عندما  والمناهج،  التربوية  البحوث  قطاع  في  فنحن  آخر،  جانب  من 
تطوير المناهج الدراسية، ننطلق من كل الأسس والمرتكزات التي سبق ذكرها، بل إننا نراها 
البحث في المستجدات  ا في  واقعية تدفعنا لبذل قصارى جهدنا والمضي قدمً محفزات 
التربوية سواء في شكل المناهج أم في مضامينها، وهذا ما قام به القطاع خلال السنوات 
الماضية، حيث البحث عن أفضل ما توصلت إليه عملية صناعة المناهج الدراسية، ومن ثم 

إعدادها وتأليفها وفق معايير عالمية استعدادًا لتطبيقها في البيئة التعليمية.



ولقد كانت مناهج العلوم والرياضيات من أول المناهج التي بدأنا بها عملية التطوير، إيمانًا 
بأهميتها وانطلاقًا من أنها ذات صفة عالمية، مع الأخذ بالحسبان خصوصية اتمع الكويتي 
المعرفة  بذلك  ونعني  التعلم  عملية  جوانب  تتضمن  أنها  أدركنا  وعندما  المحلية،  وبيئته 
الكويت،  دولة  في  التعليم  نظام  مع  تتوافق  وجعلها  بدراستها  قمنا  والمهارات،  والقيم 
مركزين ليس فقط على الكتاب المقرر ولكن شمل ذلك طرائق وأساليب التدريس والبيئة 
التعليمية ودور المتعلم، مؤكدين على أهمية التكامل بين الجوانب العلمية والتطبيقية 

حتى تكون ذات طبيعة وظيفية مرتبطة بحياة المتعلم.
وفي ضوء ما سبق من معطيات وغيرها من الجوانب ذات الصفة التعليمية والتربوية تم 
اختيار سلسلة مناهج العلوم والرياضيات التي أكملناها بشكل ووقت مناسبين، ولنحقق 
نقلة نوعية في مناهج تلك المواد، وهذا كله تزامن مع عملية التقويم والقياس للأثر الذي 
تركته تلك المناهج، ومن ثم عمليات التعديل التي طرأت أثناء وبعد تنفيذها، مع التأكيد 
على الاستمرار في القياس المستمر والمتابعة الدائمة حتى تكون مناهجنا أكثر تفاعلية.

د. سعود هلال الحربي 
الوكيل المساعد لقطاع البحوث التربوية والمناهج
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حركة الكرة هي حركة مركّبة من حركة خطيّة وأخرى دورانية.

إنّ مفهوم الحركة هو من المفاهيم الفيزيائية الأساسية المرتبطة بحياتنا اليومية . 
درسنا في السنوات السابقة علم الحركة الخطيّة والدورانية وأسبابها باستخدام 
قوانين نيوتن . أماّ في هذه الوحدة فسنتناول الحركة وأسبابها من منظور آخر ، 

يرتكز على الطاقة ودورها في تحريك الأجسام وإنجاز الشغل . وسنتعرّف 
ًّا جديدًا يسُمّى كمّية الحركة ، وسنكتشف تأثيره في تغيير  مفهومًا فيزيائي

الحركة الخطيّة أو الدورانية للأجسام . وفي نهاية الوحدة ، سنتناول ديناميكا 
الدوران لاستكمال ما درسناه سابقًا في علم الحركة الدورانية ، وسنكتشف 
مسببّاتها والعوامل المؤثرة فيها من خلال القوانين الثلاثة لنيوتن في الحركة 

الدورانية . إنّ دراسة هذه الوحدة ستساعدنا على فهم جميع العوامل المؤثرّة 
في الحركة بأنواعها وأشكالها المختلفة ، من قوى أو من طاقة مبذولة ، وعلى 
تحليل وتفسير حركة الأجسام المركّبة من حركة خطيّة ودورانية باستخدام 

قوانين نيوتن أو باستخدام قوانين الطاقة .

∂°ùØæH ∞°ûàcG
طاقة الرياح والحركة الدورانية

لت طاقة الرياح إلى طاقة حركية دورانية بهدف  منذ قديم الزمان ، حُوِّ
طحن الحبوب ورفع المياه من الآبار . في أياّمنا هذه تسُتخدم طاقة 
الرياح في توليد الطاقة الكهربائية باستخدام توربينات هوائية تولدّ 
الكهرباء نتيجة دورانها . يتلقّى التوربين في ثانية واحدة طاقة رياح 

تساوي 000J 144 ، ويحوّل 30% من هذه الطاقة إلى طاقة كهربائية .
اذكر نوعين من تحوّلات الطاقة أشُير إليها في النصّ .. 1
احُسب كمّية الطاقة الكهربائية التي ينتجها التوربين الهوائي في ثانية واحدة .. 2
عندما تنخفض سرعة الرياح ، لا يستطيع التوربين تقديم الطاقة . 3

الكهربائية اللازمة . اِشرح السبب .
اِستنتج بعضًا من سلبيات طاقة الرياح وإيجابياتها .. 4

IóMƒdG ∫ƒ°üa

الفصل الأوّل
الطاقة 

الفصل الثاني
ميكانيكا الدوران 

الفصل الثالث
كمّية الحركة الخطيّة 

IóMƒdG ±GógCG

يعرّف مفهوم الشغل . 
يستنتج العلاقة بين الشغل  

والطاقة .
يعرّف قانون حفظ (بقاء) الطاقة  

الميكانيكية .
يطبقّ القوانين الثلاثة لنيوتن في  

الحركة الدورانية .
يعرّف مفهوم كمّية الحركة  

الخطيّة ودورها في تغيير حركة 
الأجسام .

يعرّف مفهوم كمّية الحركة  
الدورانية ودورها في تغيير حركة 

الأجسام .

IóMƒdG ºdÉ©e

الفيزياء والتكنولوجيا: الدفع  
ووسائل الأمان

الفيزياء في المختبر: تطبيق عزم  
الدوران على مكّوك الخيط

الفيزياء في المختبر: أرجِح قلمك 
الفيزياء والتكنولوجيا: الطائرة  

المروحية
الربط بعلم الفلك: المجرّات  

الحلزونية

ácô◊G

Motion
¤hC’G IóMƒdG
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π°üØdG ¢ShQO

الدرس الأوّل
الشغل 

الدرس الثاني
الشغل والطاقة 

الدرس الثالث
حفظ (بقاء) الطاقة 

الطاقة الهوائية والطاقة الشمسية

كما نعلم ، الطاقة هي العامل الأساسي في نماء الإنسان وتطوّره في هذا 
العصر . تتعدّد تعريفات الطاقة ولكن جميعها يتمحور حول مفهوم واحد 

هو إمكانية إنجاز شغل .
ازدادت حاجة الإنسان إلى الطاقة مع التطوّر والتقدّم الحاصلين ، فتنوّعت 
مصادرها وتعدّدت . بعد أن استخدم الإنسان الخشب والفحم الحجري 
والبترول في توليد الطاقة تقدّم في بحوثه لاكتشاف طاقات بديلة وتعلمّ 
كيفية تحويل الطاقة من شكل إلى آخر ، فأصبحنا اليوم نستخدم الطاقة 

الشمسية والنووية وطاقة الرياح وغيرها من الطاقات لتلبية حاجاتنا 
المتزايدة من طاقة كهربائية وميكانيكية .

وبما أنّ للطاقة أشكال كثيرة ومتنوّعة تصعب دراستها دفعة واحدة ، 
سنتناول في هذا الفصل أحد أهمّ أشكالها وهي الطاقة الميكانيكية ، التي 

تعُتبر المساهم الأوّل في التقدّم التكنولوجي الذي شهدته آلات كثيرة 
ومحرّكات ومصانع في كافةّ المجالات . وسنكتشف دورها في إنجاز 

الشغل وأهمّية تحوّلها من شكل إلى آخر .

∫qhC’G π°üØdGábÉ£dG

Energy
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(شكل 2)
جيمس جول

(24 ديسمبر 1818 - 11 أكتوبر 1889).
كان له أثر بارز في تطوّر مفهوم الطاقة 

وأثبت التكافؤ بين أشكال الطاقة المختلفة 
(الميكانيكية، والكهربائية والحرارية)، وأنهّ 

يمكن تحويلها من شكل إلى آخر.

áeÉ©dG ±GógC’G

يعرّف مفهوم الشغل . 
يعرّف الجول . 
يميزّ بين الشغل الناتج عن قوّة ثابتة والشغل الناتج عن قوّة متغيرّة . 
يحسب مقدار الشغل الناتج عن قوّة ثابتة . 
يحسب مقدار الشغل الناتج عن قوّة متغيرّة . 

(شكل 1)
يدفع العامل الصندوق ليدخله داخل الشاحنة.

لم يختلف المعنى الفيزيائي لكثير من المفاهيم الفيزيائية التي درسناها 
سابقًا عن معناها المستخدَم في حياتنا اليومية ، ولكن هذا لا ينطبق على 

مفهوم الشغل ، فالمعنى الشائع لمفهوم الشغل هو القيام بجهد جسدي أو 
فكري . ولكن مفهومه الفيزيائي الذي سنكتشفه في هذا الدرس مختلف ،

فعندما يحُاوِل العامل في الشكل (1) دفع الصندوق من دون أن يتمكّن 
من تحريكه ، يجُهِد نفسه من دون أن يبذل شغلاً . كذلك يكون حالك إذا 
وقفت حاملاً حقيبتك الثقيلة على جانب الطريق ، إذ إنكّ تبذل قوّة عليها 

لتبُقيها مرفوعة عن الأرض ، وقد تشعر بالتعب وبأنكّ بذلت جهدًا ولكنكّ 
من وجهة نظر الفيزيائيين لم تبذل شغلاً . هذا يعني أنّ الشغل ليس الجهد 

والتعب وبذل القوّة كما يعتقد الكثيرون .
ما هو إذًا المفهوم الفيزيائي الحقيقي للشغل؟ وهل بذل قوّة على جسم ما 
يعني القيام بشغل؟ وهل تحريك الجسم من موضع إلى آخر يعني شغلاً؟ 

الإجابة عن هذه التساؤلات هي محور هذا الدرس .

1-1 ¢SQódGπ¨°ûdG

Work
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FF

(شكل 3)
F موازية للسطح تحرّك الجسم  قوّة منتظمة  

. d مسافة

A B

F sin θ

F cos θθ

d

F

(شكل 4)
F تصنع  تمثيل القوّة بتحليل المتجّهات لقوّة 

زاوية θ مع اتجّاه الحركة .

1 .Definition of Work  π¨°ûdG ∞jô©J
لو قام العامل في المثال السابق ببذل قوّة أكبر وتمكّن من إزاحة 

الصندوق ، يكون من وجهة نظر الفيزيائيين قد بذل شغلاً ، أي أنّ الشغل 
Work عملية تقوم فيها قوّة مؤثرّة بإزاحة جسم في اتجّاهها .

 (Joule) يقُاس الشغل بحسب النظام الدولي للوَحدات بوَحدة الجول
ك جسمًا  ويرُمزَ لها بـِ(J) . والجول هو الشغل الذي تبذله قوّة مقدارها N(1) تحُرِّ

في اتجّاهها مسافة مترٍ واحدٍ .
وتجدر الإشارة إلى أنّ اختلاف أنواع القوى بين قوى منتظمة (ثابتة 

المقدار والاتجّاه) وقوّة متغيرّة يدفعنا إلى دراسة حالتين من الشغل وهما: 
الشغل الناتج عن قوّة منتظمة ، والشغل الناتج عن قوّة متغيرّة، إذ هناك 

اختلاف كبير في حساب مقدار كلّ منهما سنراه في سياق الدرس .

2 .áª¶àæe Iqƒb øY œÉædG π¨°ûdG
Work Done by a Constant Force

ácô◊G √É qŒ’ ájRGƒe áª¶àæe Iqƒb 1.2

Constant Force Parallel to the Direction of Motion
لنأخذ صندوقاً على سطح أملس ولندفعه بقوّة F منتظمة أي ثابتة المقدار 
والاتجّاه وموازية للسطح كما في الشكل (3) ليتحرّك من النقطة A إلى 

النقطة B مسافة (d = AB) باتجّاه القوّة .
إنّ الشغل W الناتج عن القوّة F على الصندوق يكون حاصل الضرب 

العددي لمتجّه القوّة المؤثرّة على الجسم ومتجّه الإزاحة ويحُسب 
باستخدام العلاقة:

W = F . d

حيث تقُاس F بوَحدة (N) والإزاحة d بوَحدة (m) والشغل W بوَحدة 
(J)بحسب النظام الدولي للوَحدات .

 ácô◊G √É qŒG ™e ájhGR ™æ°üJ áª¶àæe Iqƒb 2.2

Constant Force Making an Angle with the Motion Direction
إذا كانت القوّة F تصنع زاوية θ مع اتجّاه الحركة كما في الشكل (4) ، 

فإنّ حساب الشغل يتطلبّ تحليل القوّة إلى مركّبتين: مركّبة أفقية في اتجّاه 
الحركة ، وتساوي F cos θ وأخرى عمودية F sin θ لا تسببّ أيّ إزاحة 

في اتجّاه الحركة ، وبالتالي لا يكون الشغل سوى نتيجة مركّبة القوّة 
الموازية لاتجّاه حركة الجسم .
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وعليه يمكننا استنتاج وتعميم أنّ مقدار الشغل الناتج عن أيّ قوّة F تسببّ 

إزاحة d = AB يحسب بالعلاقة:

W = F . d  = F ^ d ^ cos θ

حيث θ هي الزاوية بين اتجّاه القوّة واتجّاه الحركة .

áÑdÉ°S hCG áÑLƒe á« qªc π¨°ûdG 3.2

Positive or Negative Work
يمكننا أن نستنتج ، من هذه العلاقة (W = F . d) ، أنّ الشغل هو كمّية 
عددية وأنّ للزاوية θ التي يمكن أن تتغيرّ بين 0º و180º تأثير في حالة 

الشغل بحيث تجعله سالباً أو موجباً:
إذا كانت θ = 0° فإذاً cos θ = 1 وبالتالي الشغل يساوي ، كما ذكرنا  

سابقًا ، W = F . d وهو موجب المقدار لأنّ الإزاحة باتجّاه القوّة .
وفي حال θ < 90°  °0 يكون cos θ > 0  1 أي يكون الشغل  

موجباً ومنتِجًا للحركة (شكل 5) (القوّة لها مركّبة باتجّاه الإزاحة) . 
  W= 0 وبالتالي الشغل يساوي cos θ = 0 فإذًا θ = 90° إذا كانت

كما هو الحال عندما ترفع حقيبتك بقوّة إلى أعلى وتتحرّك باتجّاه 

أفقي عمودي على اتجّاه القوّة ، أي أنّ القوّة عمودية على الحركة .
وفي حال θ  180° > °90 يكون cos θ < 0 أي يكون الشغل  

سالباً ، مقاومًا للحركة (شكل 6) (القوّة لها مركبة عكس اتجّاه 

الإزاحة) .
أماّ إذا كان اتجّاه القوّة معاكِسًا تمامًا لاتجّاه الإزاحة ، أي أنّ الزاوية  

بين القوّة واتجّاه الإزاحة تساوي °180 ، فإنّ cos θ = -1 وبالتالي 
يكون الشغل سالباً .

áª¶àæŸG iƒ≤dG øe áYƒªéŸ π¨°ûdG á∏ q°üfi 4.2

Resultant of Work Done by Constant Forces
ضًا لمجموعة من القوى المنتظمة ، فإنّ إيجاد مقدار  إذا كان الجسم معرَّ

ِّرة في  محصّلة الشغل على الجسم يتطلبّ إيجاد محصّلة القوّى المؤث
الجسم ليكون الشغل مساوياً للضرب العددي لمتجّهي محصّلة القوى 

والإزاحة أي:

W
Net

 = FNet
 . d

= F
Net

 ^ d cos θ  

وإذا كان تأثير الشغل الكليّ للجسم هو تغيير في سرعته فإنّ الإشارة 
الموجبة للشغل الكليّ تعني زيادة في سرعة الجسم والإشارة السالبة تعني 

انخفاضًا (نقصًا) في سرعته .

F

θ

(شكل 5)
القوّة لها مركّبة في اتجّاه الإزاحة

يكون الشغل موجبًا عندما تكون الزاوية

0 ≤ θ < 90º

θ
F

(شكل 6)
القوّة لها مركّبة عكس اتجّاه الإزاحة
يكون الشغل سالبًا عندما تكون الزاوية

90º < θ  ≤ 180º
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(1) ∫Éãe

يحمل الولد في الشكل (7) كرة كتلتها kg(1.5) خارج نافذة غرفته في الطابق الثاني التي ترتفع عن 
. (6)m الأرض

(أ) ما هو مقدار الشغل المبذول على الكرة نتيجة قوّة إمساك الولد لها؟
(ب) أفلت الولد الكرة لتسقط تحت تأثير قوّة الجاذبية الأرضية . ما هو مقدار الشغل الناتج عن قوّة 

. (g = (10)N/kg علمًا أنّ مقدار عجلة الجاذبية) (3) ؟m الجاذبية الأرضية إذا تحرّكت الكرة مسافة
(جـ) ما هو مقدار الشغل الناتج عن قوّة الاحتكاك مع الهواء (المفترَض أنهّا ثابتة) خلال سقوط الكرة 

. f = (1)N (3) علمًا أنّ مقدار قوّة الاحتكاكm مسافة
ِّرة فيها . (د) احُسب الشغل الكلي المبذول على الكرة نتيجة القوى المؤث

طريقة التفكير في الحلّ

1 .

mg

 d
 =

 (3
)m

(شكل 7)

حلِّل: اذُكر المعلوم وغير المعلوم . 
m = (1.5)kg : المعلوم: كتلة الكرة

d = (3)m : مقدار الإزاحة  
غير المعلوم: (أ) الشغل الناتج عن قوّة إمساك الولد للكرة؟
(ب) الشغل عندما تسقط الكرة مسافة m(3)؟  

(جـ) الشغل الناتج عن قوّة الاحتكاك؟  
(د) محصّلة الشغل؟  

احُسب غير المعلوم .. 2

(أ) بما أنّ الولد يمُسك بالكرة فإنّ مقدار الإزاحة يساوي 
صفرًا وبالتالي فإنّ مقدار الشغل الناتج عن قوّة إمساك الولد 

للكرة يساوي صفرًا .
ِّرة في الكرة يساوي F = m ^ g = 1.5 ^ 10 = (15)N واتجّاهها  (ب) إنّ مقدار قوّة الجاذبية المؤث

هو اتجّاه الإزاحة . باستخدام معادلة الشغل:
W = F ^ d ^ cos θ

وبالتعويض عن المقادير المعلومة نحصل على:
W = 15 ^ 3 ^ cos 0 = (45)J

(جـ) باستخدام المعادلة وبالتعويض عن المقادير المعلومة نحصل على:
علمًا بأنّ اتجّاه قوّة الاحتكاك معاكس لاتجّاه حركة الجسم .

W = f ^ d ^ cos 180 = 1 ^ 3 ^ (-1) = (-3)J
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F F

F

F

ddL
1

dL
2A

B

(شكل 8)
. Bو A الشغل لا يعتمد على شكل المسار بين

mg

A

h
A

h
A  

>
 
h

B

G

G

G

h
B

h

B

الأرض

الإرتفاع

θ

(شكل 9)
. B إلى نقطة A يتحرّك الجسم من نقطة
الشغل الناتج عن وزن الجسم موجب .

(™HÉJ) (1) ∫Éãe

(د) محصّلة القوى المؤثرّة على الكرة تساوي:
F واتجّاهها هو اتجّاه السقوط . نجد باستخدام معادلة الشغل أنّ:

NET
 = 15 - 1 = (14)N

W
NET

 = 14 ^ 3 ^ cos 0 = (42)J
ِّرة  تجدر ملاحظة أنّ مقدار الشغل المبذول على الجسم يساوي الشغل الكليّ الناتج عن القوى المؤث

أي أنّ:
W

Net
 = 45 – 3 = (42)J

قيِّم: هل النتيجة مقبولة؟. 3
يتناسب مقدار الشغل مع المعطيات في المسألة أي مع مقدار الكتلة والإزاحة ، وهو موجب عندما 

ِّجاه الإزاحة ، وسالب عندما يكون اتجّاه القوّة معاكسًا لاتجّاه  ِّرة في ات يكون اتجّاه القوّة المؤث
الإزاحة .

»æëæe QÉ°ùe ≈∏Y áª¶àæe Iqƒb øY œÉædG π¨°ûdG 5.2

Work Done by a Constant Force on an Inclined Plane
تتحرّك نقطة تأثير القوّة المنتظمة F على مسار منحنى من النقطة A إلى 
النقطة B كما في الشكل (8). وبما أنّ المسار ليس مستقيمًا ، نستطيع 

أن نقسمه إلى إزاحات صغيرة متتالية بحيث تصنع كلّ إزاحة خطيّة زاوية 
 ΔL لكلّ إزاحة صغيرة F مع القوّة . الشغل الناتج عن القوّة المنتظمة θ

يساوي:

ΔW = F . ΔL

ناتج الشغل الكليّ يساوي :
W = ΔW

1
 +ΔW

2
 +ΔW

3
 + ……+ ΔW

n

F . ΔL
1 +F . ΔL

2 + … + F . ΔL
n = F . AB

بالتالي نستنتج أنّ الشغل لا يرتبط بشكل المسار الذي سلكته نقطة تأثير 
. B إلى A القوّة من

 h
A
فلنأخذ جسمًا مركز ثقله G يتحرّك من النقطة A الموجودة على ارتفاع 

من خطّ مرجعي أفقي (سطح الأرض) إلى النقطة B الموجودة على ارتفاع 
ح في الشكل (9) . h من الخطّ المرجعي نفسه على المسار الموضَّ

B

وزن الجسم W قوّة منتظمة والشغل الناتج عن وزن الجسم يمكن حسابه 
على الشكل التالي:

W
W
 = W . d  = mg . d . cos θ

d . cos θ = h
A
 - h

B
ولكن   

بالتالي يكون الشغل:
W = mg . (h

A
 – h

B
)
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يتبينّ لنا من هذه المعادلة أنّ الشغل الناتج عن وزن الجسم لا يرتبط 
بالمسار بين النقطتين بل يرتبط بمقدار الإزاحة الرأسية بين النقطتين .

 h
B
 < h

A
فعندما يتحرّك الجسم إلى نقطة أدنى من موقعه الابتدائي ، أي 

يكون الشغل الناتج عن الوزن موجباً (كما في الشكل 9) .
 h

B
 > h

A
وعندما يتحرّك الجسم إلى نقطة أعلى من موقعه الابتدائي ، أي 

يكون الشغل الناتج عن الوزن سالباً (شكل 10) .
 h

A
 = h

B
أماّ إذا تحرّك الجسم من نقطة إلى نقطة على المستوى نفسه ، أي أنّ 

يكون الشغل الناتج عن الوزن يساوي صفرًا .

(2) ∫Éãe

وُضع صندوق خشبي كتلته g(100) على مستوى أملس يميل بزاوية 30º مع المستوى الأفقي (شكل 
. AB = (50)cm 11) . احُسب الشغل الناتج عن وزن الصندوق إذا تحرّك على المستوى المائل مسافة

. g = (10)m/s2 اِعتبِر أنّ عجلة الجاذبية
طريقة التفكير في الحلّ

1 .

mg

mg cos α

mg sin α

α = 30º

A

30º

B

h

(شكل 11)

حلِّل: اذُكر المعلوم وغير المعلوم . 
 m = (0.1)kg : المعلوم: كتلة الصندوق

d = (0.5)m : مقدار الإزاحة  
غير المعلوم:

الشغل الناتج عن وزن الصندوق؟
احُسب غير المعلوم .. 2

لا يرتبط الشغل الناتج عن وزن الصندوق بالمسار بين النقطتين بل بالارتفاع بين النقطتين:
h = d . sin 30

h = 0.5 (1
2) = (0.25)m

وبالتعويض عن المقادير المعلومة يساوي الشغل الناتج عن وزن الصندوق:
W = m . g . h = 0.1 ^ 10 ^ 0.25 = (0.25)J

كمّية الشغل موجبة لأنّ الصندوق يتحرّك إلى أسفل .

A

h
A

h
B

mg

h
A 
<

  
h

B

h

B

الأرض

(شكل 10)
الشغل الناتج عن وزن الجسم سالب .
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äÉHÉLEG ™e ¿ÉàdCÉ°ùe

قوّتان تعملان على صندوق خشبي . 1

وُضِع فوق سطح أفقي أملس 

لينزلق مسافة m(2.5) بالاتجّاه 

الموجب للمحور الأفقي .
 (10)N قوّة منتظمة مقدارها F1

وتصنع زاوية 30º مع المحور 
F قوّة منتظمة 

2
الأفقي x’x و 

مقدارها N(7) وتصنع زاوية 
150º مع المحور الأفقي .

احُسب الشغل الناتج عن كلّ 
د إذا كان  من هذه القوى وحدِّ

الشغل مساعدًا أو مقاوِمًا .
 ،W

1 
= (21.65)J الإجابات: 

الحركة على  مساعِد  شغل 
W شغل مقاوِم.

2 
= (-15)Jو

 يدفع شخص عربة حديقة بقوّة . 2

N(45) تصنع زاوية 40º مع 

المحور الأفقي . احُسب الشغل 

الناتج عن هذه القوّة إذا دفع 

العربة مسافة m(15)؟
W = (517)J :الإجابة

F

الشغل

x

(شكل 12)
تمثيل الشغل من خلال المساحة تحت المنحنى

(™HÉJ) (2) ∫Éãe

قيِّم: هل النتيجة مقبولة؟. 3
يتناسب مقدار الشغل مع الكمّيات المعطاة في المسألة من مقدار 

الكتلة والإزاحة . ويمكن التحقّق من النتيجة بطريقة أخرى كما يلي:
يمكن تحليل وزن الصندوق إلى مركّبتين: أفقية موازية للسطح المائل 

W ، والأخرى عمودية على السطح 
t
 = m . g . sin 30 ومقدارها

W (شكل 11) .
n
 = m . g . cos 30 ومقدارها

محصّلة شغل وزن الصندوق تساوي مجموع الشغل الناتج عن 
المركّبتين ، ولكنّ الشغل الناتج عن المركّبة العمودية يساوي 

صفرًا لأنهّ عمودي على الإزاحة ، وبالتالي ، الشغل الناتج عن وزن 
الصندوق هو الشغل الناتج عن المركّبة الأفقية فحسب التي سببّت 

الإزاحة AB ويساوي: 
W = W

Wt
 = m . g . sin 30 ^ AB = 0.1 ^ 10 ^ 0.5 ^ 0.5 = (0.25)J

وهذا يتوافق مع ما توصّلنا إليه سابقًا ويؤكّد صحّته .

áª¶àæe Iqƒb øY œÉædG π¨°û∏d ÊÉ«ÑdG π«ãªàdG 6.2

Work Done by a Constant Force Graph
الشغل الناتج عن قوة منتظمة هو كميّة عددية تساوي حاصل الضرب العددي 

ًّا بالمساحة تحت الخطّ  لمتجّهي القوّة والإزاحة ، وبالتالي يمكن تمثيله بياني
المرسوم الذي يمثلّ القوّة F بدالةّ الإزاحة x . فالشغل يساوي مساحة 
المستطيل (شكل 12) الذي يمثلّ ضلعه الرأسي مقدار القوّة ، وضلعه 

الأفقي مقدار الإزاحة .

3 .I qÒ¨àe Iqƒb øY œÉædG π¨°ûdG
Work Done by a Variable Force
القوّة المتغيرّة هي القوّة التي يتغيرّ مقدارها أو اتجّاهها ، أو يتغيرّ مقدارها 

واتجّاهها معًا أثناء تأثيرها في الجسم . ومن الأمثلة على القوى المتغيرّة 
التي سنتناولها في هذا الدرس ، نذكر قوّة الشدّ على الزنبرك التي يساوي 

F = k Δ . تمثلّ k في  x مقدارها كما درسنا سابقًا وفقًا لقانون هوك
هذه المعادلة ، ثابت هوك ويعبَّر عنها بحسب النظام الدولي للوَحدات 

. m استطالة أو انضغاط الزنبرك ويعبَّر عنها بوَحدة Δx ّوتمثل N
m

بوَحدة 

ِّرة في الجسم متغيرّة أثناء إزاحته فإنّ الشغل الناتج  عندما تكون القوّة المؤث
. (F-x) ًّا بالمساحة تحت المنحنى يكون متغيرًّا ، ويمكن تمثيله بياني
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F
x

x
i

x
f

x

ΔW = F
x
 Δx

x

 Δx

(شكل 13)

F

x

الشغل

O

h

F = kx 

x(b)

(شكل 14)
 يتمثلّ الشغل بمساحة المثلثّ وتساوي المساحة

(s = b ^ h
2

) 

 Δx ًّا ، نأخذ إزاحة صغيرة ولحساب المساحة تحت المنحنى رياضي
ِّرة في هذه الإزاحة منتظمة تقريباً ليساوي الشغل  كي تكون القوّة المؤث

المبذول:
ΔW = F

x
Δx

وبتقسيم المنحنى إلى أجزاء صغيرة كما في الشكل (13) ، وحساب 
الشغل المبذول في كلّ جزء منه وجمعه ، نكتب الشغل الكليّ الناتج عن 

القوّة المتغيرّة على الشكل التالي:

W = 
    x

f

! F
x
Δx

    x
i

ويمكن حساب الشغل الناتج عن القوّة المتغيرّة F = kΔx باستخدام 
 F ِّرة ، فنرسم مقدار القوّة الرسم البياني لتغيرّات الاستطالة بتغيرّ القوّة المؤث

بدالةّ الاستطالة x كما في الشكل (14) .
وبما أنّ الشغل يساوي المساحة تحت المنحنى F بدالةّ x ، فإنّ الشغل 

الكليّ يساوي مساحة المثلثّ تحت المنحنى .
 

W = 12 (kΔx) . (Δx)

 = 12 k(Δx)2  

أي أنّ الشغل يساوي : 

(3) ∫Éãe

ًّا كما في الشكل  علُِّقت كتلة مقدارها m = (0.15)kg بالطرف الثاني (الحرّ) للزنبرك المعلَّق رأسي
. (15)

. (4.6)cm احُسب مقدار الشغل المبذول لاستطالة الزنبرك مسافة مقدارها
طريقة التفكير في الحلّ

1 .

Δx = (4.6)cm

(شكل 15)

حلِّل: اذُكر المعلوم وغير المعلوم . 
 m = (0.15)kg : المعلوم: الكتلة

Δx = (4.6)cm : مقدار الإزاحة  
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2
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3

F (N)

x (m)0

(شكل 16)

(™HÉJ) (3) ∫Éãe

غير المعلوم:
الشغل الناتج عن وزن الكتلة المعلَّقة في طرف الزنبرك؟

احُسب غير المعلوم .. 2

بما أنّ الزنبرك في وضع اتزّان فإنّ وزن الكتلة المعلَّقة في الزنبرك يساوي قوّة الشدّ ، أي أنّ:
m.g = k Δx ⇒ k = m.g

Δx
 = 0.15 ^ 10

0.046  = (32.6)N/m

وباستخدام المعادلة وبالتعويض عن المقادير المعلومة نجد:
W = 12 kΔx2 = 12 (32.6)(0.046)2 = (0.034)J

قيِّم: هل النتيجة مقبولة؟. 3
ِّرة . إنّ مقدار الشغل يتناسب مع مقدار الإزاحة الصغير والقوّة المؤث

1-1 ¢SQódG á©LGôe

أوّلاً - عندما تقف وأنت تحمل حقيبة التخييم على ظهرك ، ما هو 

ر إجابتك . مقدار الشغل الناتج عن قوّة الحمل؟ فسِّ
 (100)N ثانيًا - احُسب مقدار الشغل الذي يجب بذله على حجر وزنه

لرفعه m(1) عن سطح الأرض .
 . (40)N/m ثالثًا - زنبرك مثبَّت من أحد طرفيه ثابت مرونته يساوي

ما هو مقدار الشغل الذي يجب بذله على الطرف الآخر لجعله 
يستطيل cm(2) عن طوله الأصلي ؟

رابعًا - إذا كان مقدار الشغل اللازم لجعل زنبرك يستطيل cm(8) عن 

طوله الأصلي يساوي J(400) ، احُسب مقدار ثابت مرونة هذا الزنبرك .
خامسًا - ضُغِط زنبركًا cm(2) عن طوله الأصلي في مرحلة أولى 

ومن ثمّ ضُغِط cm(6) إضافية في مرحلة ثانية . ما هو مقدار الشغل 
الإضافي المبذول في خلال عملية الضغط الثانية مقارنة بالعملية 

(k = (100)N/m علمًا أنّ ثابت المرونة) الأولى؟
 F سادسًا - احُسب مقدار الشغل الناتج عن القوّة المتغيرّة

حين تتغيرّ القوّة وفقًا للرسم البياني المُعطى (شكل 16) .
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يعدّد أنواعًا مختلفة من الطاقة . 
يعرّف الطاقة . 
يعرّف الطاقة الحركية . 
يستنتج العلاقة بين الشغل والطاقة الحركية . 
يستخدم قانون الشغل والطاقة في حلّ مسائل . 
يعرّف الطاقة الكامنة . 
يعرّف طاقة الوضع . 
يستنتج العلاقة بين الشغل الناتج عن الوزن وتغيرّ طاقة الوضع . 
يعرّف الطاقة الميكانيكية . 

(شكل 17)

بعد أن تعرّفنا في الدرس السابق مفهوم الشغل ، سنتعرّف من خلال هذا 
ًّا مهمًّا مرتبطاً ارتباطاً وثيقًا بمفهوم الشغل وبحياتنا  الدرس مفهومًا فيزيائي

اليومية وهو مفهوم الطاقة .
سعى الإنسان قديمًا إلى البحث عن مصادر طاقة ليستخدمها في أشكال 

متنوّعة من الشغل ، فاستخدم طاقة الحيوانات للقيام بأنشطته الزراعية 
وللتنقّل . واستخدم طاقة النار في الطهو والإنارة، واستخدم طاقة المياه 

والرياح في تشغيل المطاحن . ومع تطوّر العلم وتقدّمه ، اكتشف الإنسان 
أنواعًا جديدة من الطاقة ، مثل الطاقة الكيميائية والطاقة الكهربائية 

والميكانيكية وغيرها فاستخدمها حتىّ توصّل في يومنا هذا إلى اكتشاف 
الطاقة النووية واستخدامها .

سنتناول في هذا الدرس الطاقة الميكانيكية على أنهّا كمّية يمتلكها الجسم 
أو النظام ، ولأنهّا أكثر أنواع الطاقة ارتباطاً بالشغل . وسنتذكّر ، كجزء من 
الطاقة الميكانيكية ، الطاقة الحركية ، التي درسناها في السنوات السابقة ، 

لنفسّر نتيجة الشغل المبذول في حركة الجسم والتغيرّ في طاقته .
وسنتعرّف أيضًا في سياق الدرس مفهوم الطاقة الكامنة كجزء آخر من 

الطاقة الميكانيكية وسنكتشف دورها في شغل الأجسام .

2-1 ¢SQódGábÉ£dGh π¨°ûdG 

Work and Energy 
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(شكل 18)

1 .Definition of Energy  ábÉ£dG ∞jô©J
إذا أردتَْ إنجاز شغل ما كإزاحة صندوق من مكان إلى آخر على سبيل 
المثال ، فلا بدّ أن تمتلك طاقة للقيام بذلك . فأنت تعطي الصندوق في 

أثناء دفعك إياّه جزءاً من طاقتك الكيميائية التي اكتسبتها من الطعام 
وحوّلتها إلى طاقة حركية ، أي تنقل الطاقة منك إلى الصندوق من أجل 

القيام بشغل .
ويتوقفّ مقدار الشغل المنجَز على مقدار الطاقة التي يصرفها الجسم ، 

فالكرة المقذوفة بسرعة أفقية كبيرة على مستوى أفقي تستطيع أن تقطع 
مسافة أكبر قبل أن تتوقفّ من كرة مماثلة لها قذفت بسرعة أقل قبل أن 

تتوقفّ على نفس المستوى لأنّ الكرة الأولى تمتلك طاقة حركية أكبر . 
وكذلك إذا أسقطتَْ مطرقة على مسمار من مكان مرتفع، ينغرز المسمار 

أكثر أي تنجز شغلاً أكبر مقارنة بإسقاطها من مكان أقلّ ارتفاعًا ، لأنهّا 
تملك في الحالة الأولى طاقة أكبر .

ومن خلال هذه الأمثلة ، نعرّف الطاقة Energy على أنهّا المقدرة على إنجاز 
شغل . يعُبَّر عن الطاقة كما يعُبَّر عن الشغل ، بحسب النظام الدولي 

. (J) للوَحدات ، بوَحدة الجول

2 . Kinetic Energy  á«cô◊G ábÉ£dG
عندما نبذل قوّة كافية على جسم ما فإنه يتحرّك ويكون قادرًا على أن ينجز 

شغلاً ، هذا يعني أنهّ يمتلك طاقة حركية . وكلمّا تحرّك الجسم بسرعة 
 Kinetic أكبر عنى ذلك أنهّ يمتلك طاقة حركية أكبر . نعرّف الطاقة الحركية

Energy على أنهّا شغل ينُجِزه الجسم بسبب حركته . تتوقفّ الطاقة الحركية 

لجسم ما أثناء حركته على مسار مستقيم على كتلة الجسم ومقدار سرعته 
الخطيّة التي يتحرّك بها .

(أ) الطاقة الحركية لكتلة نقطية:
تحُسب الطاقة الحركية الخطيّة للجسم النقطي باستخدام المعادلة التالية:

KE = 12 mv2

 v ّوتمثل kg ك ويعُبَّر عنها بوَحدة حيث تمثلّ m كتلة الجسم المتحرِّ
سرعة الجسم الخطيّة ويعبَّر عنها بوَحدة m/s . أماّ الطاقة الحركية فتقُاس 

. (J) بوَحدة الجول

(ب) الطاقة الحركية لنظام مؤلَّف من كتل نقطية:
إذا أردنا حساب الطاقة الحركية لنظام يتألفّ من مجموعة كتل نقطية 

نجمع الطاقة الحركية لكلّ كتلة نقطية في النظام كما في الشكل (18) ، 
أي: 

KE = 12 m
1
v

1
2 + 12 m

2
v

2
2 +  ……  + 12 m

n
v

n
2
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M

v

(شكل 19)

A

B

Δ

(شكل 20)
 Δ عندما تدور العجلة حول محور الدوران

بسرعة دورانية ω، تكون لجميع نقاطها السرعة 
الدورانية نفسها .

ádCÉ°ùe

اِستخدم الجدول (1) لإيجاد الطاقة 
الحركية الدورانية لعصا كتلتها

 (50)cm وطولها m = (500)g 
تدور حول محور يمرّ في نقطة 
الوسط بسرعة دورانية تساوي

. (10)rad/s

 (0.52)J :الإجابة

(جـ) الطاقة الحركية لجسم صلب:
ك على مسار خطيّ ،  بما أنّ جميع الكتل النقطية للجسم الصلب المتحرِّ

والتي تشكّل كتلته M ، تتحرّك بالسرعة الخطيّة نفسها (شكل 19) ، تمُثَّل 
الطاقة الحركية لهذا الجسم بالعلاقة الرياضية التالية:

KE = 12 Σm
i
 v2

أي أنّ الطاقة الحركية للجسم الصلب المصمت تساوي:
KE = 12 M v2

َّفًا من أكثر من جسم مصمت فإنّ الطاقة  ملاحظة: إذا كان النظام مؤل
الحركية للنظام تساوي مجموع الطاقات الحركية لكلّ الأجسام المصمتة 

نة له . المكوِّ

(د) الطاقة الحركية لجسم صلب يدور:
إذا دار الجسم الصلب حول محور كما في الشكل (20) فإنّ جميع نقاطه 

ستملك السرعة الدورانية نفسها ، وستبلغ سرعة أيّ نقطة كتلتها m تبعد 
مسافة r عن مركز الدوران v = r .ω . وبتعويض مقدار السرعة في معادلة 

الطاقة الحركية : 
KE = 12 ∑m v2 = 12 ∑m ^ (r.ω)2 = 12 ω2 (∑m.r2)

ولكنّ الكمّية الفيزيائية (Σmr2) تمثلّ القصور الذاتي الدوراني لنظام حول 
محور الدوران ويرُمزَ لها بـِ I . بالتالي ، نكتب معادلة الطاقة الحركية 

لجسم صلب يدور حول محور ثابت على الشكل التالي:

KE = 12 I ω2

ملاحظة: يختلف القصور الذاتي الدوراني لجسم ما باختلاف شكله 
ًّا في دروس لاحقة . يحتوي الجدول  ومحور دورانه وسنتناول ذلك تفصيلي
(1) على مقدار القصور الذاتي الدوراني لبعض الأجسام لاستخدامها عند 
الحاجة في إيجاد الطاقة الحركية الدورانية لهذه الأجسام . سنرى القصور 

الذاتي الدوراني للجسم بالتفصيل في الدرس الثاني من الفصل الثالث .

مقدار القصور الذاتي الجسم 
الدوراني

 r مسافة Δ تبعد عن محور الدوران m كتلة نقطيةI = mr2

قرص مصمت كتلته m ونصف قطره r يدور حول 
I = 12 mr2 محور عمودي يمرّ في مركزه

حلقة دائرية كتلتها m ونصف قطرها r تدور حول 
محور عمودي يمرّ في مركزها

I = mr2

عصا منتظمة الشكل طولها L وكتلتها m تدور حول 
I = 1محور عمودي يمرّ في نقطة الوسط

12 mL2

جدول (1)
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3 .π¨°ûdGh á«cô◊G ábÉ£dG ÚH ábÓ©dG
Relation Between Kinetic Energy and Work
قرص كتلته m في الشكل (21) يتحرّك على طاولة هوائية نتيجة تأثير قوّة 

.F منتظمة

(شكل 21)
F التي تسببّها حركة اليد . يتحرّك القرص على الطاولة الهوائية نتيجة للقوّة 

بما أنّ القوّة F هي قوّة منتظمة فإنّ حركة القرص حركة منتظمة العجلة 
(بعجلة موجبة a) بحسب القانون الثاني لنيوتن للحركة ، ما يعني أنّ تأثير 
v إلى سرعة 

i
القوّة F على القرص أدتّ إلى تغيرّ سرعته من سرعة ابتدائية 

v . وبما أنّ كتلة القرص تحرّكت على الطاولة مسافة Δ x فإنّ 
f
نهائية 

الشغل الناتج عن محصّلة قوى منتظمة F∑ خلال هذه الإزاحة يساوي:
W = ∑F . Δx = m.a.Δx

وكما درسنا سابقًا في الحركة الخطيّة منتظمة العجلة ، يمكننا أن نستخدم 
العلاقة التالية:

v
f
2 - v

i
2 = 2a.Δx  ⇒  a.Δx = 

v
f
2 - v

i
2

2
W = ∑F . Δx = m.a.Δx :وبالتعويض في المعادلة

W = m 
v

f
2 - v

i
2

2 نحصل على قانون الطاقة الحركية: 

W = 12 m.v2
f
 – 12 m.v2

i

W = ΔKE
قانون الطاقة الحركية

ِّرة في الجسم في فترة  الشغل الناتج عن محصّلة القوّة الخارجية المؤث
زمنية محدّدة يساوي التغيرّ في طاقته الحركية في الفترة نفسها .

F
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انزلق جسم من سكون من . 1
النقطة A على المستوى المائل 

الأملس ، زاوية ميله 30º مع 
المستوى الأفقي ، ليصل إلى 

. AB
 
= (2)m حيث B النقطة

احُسب سرعة الجسم عند النقطة 
B مستخدمًا قانون الطاقة الحركية ، 

. (g = (10)m/s2 ّعلمًا أن)

v
B 

= (4.47)m/s :الإجابة

قذُف جسم كتلته g(200) من . 2

النقطة A رأسياً إلى أعلى بسرعة 

v ليصل 
A 

= (20)m/s ابتدائية
في غياب الاحتكاك إلى أقصى 

. B ارتفاع عند النقطة
(أ) احُسب الطاقة الحركية 

. A للجسم عند نقطة الانطلاق
(ب) احُسب الطاقة الحركية 

. B للجسم عند النقطة
(جـ) احُسب المسافة التي قطعها 

الجسم في غياب الاحتكاك 
(40)J (أ) :الإجابات

(0)J (ب)  
(20)m (جـ)  

(1) ∫Éãe

اِستخدم قانون الطاقة الحركية لإيجاد سرعة كرة سقطت من سكون 
من ارتفاع cm(50) عن سطح الأرض لحظة ارتطامها بالسطح.

(g = (10)m/s2 اهَمِل الاحتكاك مع الهواء واستخدم عجلة الجاذبية)
طريقة التفكير في الحلّ

حلِّل: اذُكر المعلوم وغير المعلوم .. 1
h = (50)cm : المعلوم: الارتفاع

v
i
 = (0)m/s : السرعة الابتدائية  

g = (10)m/s2 : عجلة الجاذبية  
غير المعلوم:

v
f
السرعة لحظة الاصطدام بالأرض : ? = 

احُسب غير المعلوم .. 2

باستخدام قانون الطاقة الحركية الذي ينصّ على أنّ الشغل الناتج عن 
ِّرة في فترة زمنية محدّدة يساوي التغيرّ في الطاقة  محصّلة القوّى المؤث

الحركية في الفترة نفسها:
W = ΔKE

ِّرة في الجسم أثناء سقوطه في غياب  وبما أنّ القوّة الوحيدة المؤث
الاحتكاك هي وزنه ، نكتب:

m.g.h = 12 m.v2
f
 - 12 m.v

i
2 

وبالتعويض عن المقادير المعلومة ، نحصل على:

v2
f
 = 2g.h  ⇒  v

f
 = �                          0.5 ^ 10 ^ 2 = (3.162)m/s

قيِّم: هل النتيجة مقبولة؟. 3
ًّا ويتناسب مع المعطيات  مقدار السرعة لحظة الاصطدام مقبول عملي

في المسألة .

4 . Potential Energy  áæeÉμdG ábÉ£dG
الطاقة الكامنة Potential Energy هي طاقة يختزنها الجسم وتسمح له بإنجاز 

شغل للتخلصّ منها .
هناك طاقة كامنة داخل المركّبات الكيميائية وهي موجودة مثلاً في الفحم 

الحجري ، وفي البطاّريات الكهربائية ، وفي الغذاء الذي تتناوله وغيرها .
وتختزن الأجسام طاقة كامنة تثاقلية مرتبطة بموقعها بالنسبة إلى سطح 

مرجعي وطاقة كامنة مرنة تسمح للجسم المرن بالعودة إلى وضع مستقرّ 
بعد أن يتخلصّ من طاقة أكسبته وضعًا جديدًا قد يكون انكماشًا أو استطالة .
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Elastic Potential Energy  áfôŸG áæeÉμdG ábÉ£dG 1.4
 لنأخذ زنبركًا مثبَّتاً من أحد طرفيه ونسحبه بإزاحة Δ x  من موضع سكونه 

(شكل 22) . الشغل المبذول عليه نتيجة القوّة المتغيرّة ، التي تتناسب 
W = 12 kΔx2 :ًّا مع استطالته ودرسناها في الدرس السابق ، تساوي طردي
يخُتزن هذا الشغل المبذول في الزنبرك على شكل طاقة كامنة مرنة تجعل 

الزنبرك يعود إلى وضعه الأصلي عند إفلاته . بالتالي يمكننا استنتاج أنّ 
اختزان الطاقة المرنة في الأجسام يحدث عند شدّها أو ضغطها أو ليهّا 

وهي تساوي الشغل الذي بذُِل لتغيير وضعها من وضع مستقرّ إلى وضع 
الاستطالة أو الانكماش أو الليّ . يحُسب مقدار الطاقة الكامنة المرنة 

بالعلاقة التالية:

PE
e
 = 12 k Δx2

أماّ إذا تمّ ليّ جسم مثبَّت إلى خيط مطاّطي مرن بإزاحة زاوية مقدارها 
Δθ من وضع سكون (شكل 23) ، فإنّ الطاقة الكامنة المرنة المختزَنة في 

الخيط المطاّطي والتي تسمح للنظام بالعودة إلى وضعه الأوّلي تحُسب 
بالعلاقة التالية:

PE
e
 = 12 C Δθ2

حيث C تساوي ثابت مرونة الجسم المرن والذي يعتمد على طول 
الخيط وسماكته وعلى الخصائص الميكانيكية للجسم المرن، وتقُاس 

. N.m/rad2 بحسب النظام الدولي للوَحدات بوَحدة

θ

ω

(شكل 23)
عند ليّ الجسم المثبتّ بخيط مطاّطي مرن ، فإنّ طاقة كامنة مرنة تخُتزن بالخيط المطاطيّ وتسمح للجسم 

بالعودة إلى وضعه السابق عند إزالة القوّة المسبِّبة لليهّ .

á«∏bÉãàdG (™°VƒdG) áæeÉμdG ábÉ£dG 2.4

Gravitational Potential Energy
يكتسب جسم ما ، إذا رُفِع إلى ارتفاع (h) عن سطح الأرض ، طاقة كامنة 

تثاقلية في موقعه الجديد ، وبالتالي يستطيع بذل شغل إذا سُمِح له بالسقوط . 
ولعلّ من أشهر الأمثلة على الطاقة الكامنة التثاقلية هي الشلاّلات ، فالمياه 

نها من بذل شغل أثناء هبوطها . في أعلاها تملك طاقة كامنة تمكِّ

Δx

F

(شكل 22)
إنّ شدّ الزنبرك بقوّة يجعله يختزن طاقة كامنة 

مرنة تسمح له بالعودة إلى شكله السابق عند إزالة 
القوّة المؤثِّرة .
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بالتالي ، فإنّ الطاقة الكامنة في جسم في موقعه حدّدت قدرته على إنجاز 
شغل . لا بدّ إذًا من بذل شغل على الجسم لرفعه إلى موضع معينّ ، 

فيكتسب بذلك طاقة كامنة . وبالتالي الشغل المبذول على الجسم لرفعه إلى 
نقطة ما يساوي الطاقة الكامنة له عند هذه النقطة:

+W = PE = F.h

حيث تعبرّ F عن مقدار القوّة المؤثِّرة في الجسم وتعُادِل وزنه ، وتعبرّ h عن 
ارتفاع الجسم عن سطح الأرض.

F = m.g

∴ PE = m.g.h

يلاُحَظ عند حساب الطاقة الكامنة التثاقلية أنهّا تنُسَب إلى سطح الأرض ، 
 (h = 0) وبذلك تساوي طاقة الجسم الكامنة وهو على سطح الأرض

صفرًا. ويسُمّى مستوى سطح الأرض في هذه الحالة «المستوى المرجعي» 
أي المستوى الذي نبدأ منه قياس الطاقة الكامنة ، وتساوي الطاقة الكامنة 

عنده صفرًا لأيّ جسم.
ومن المعروف أنّ تحديد «المستوى المرجعي» اختياري بحت ، فأثناء 

وجودنا في مختبر المدرسة يمكننا اعتبار المستوى المرجعي هو أرضية 
المختبر ، ونبدأ منها حساب الطاقة الكامنة ، على الرغم من أنّ المختبر قد 

يكون في الطبقة الثانية من مبنى المدرسة ، وعليه فإنّ الطاقة الكامنة التثاقلية 
ترتبط بارتفاع الجسم عن المستوى المرجعي كما في الشكل (24).

2m2m 2m

abc

4m

200J 200J 200J

(شكل 24)
الطاقة الكامنة في حجر يزن N(100) تساوي J(200) ، ويلاُحظَ أنّ ارتفاع الحجر عن الأرض (المستوى 

.(2)m المرجعي) ثابت ويساوي
.(100)N رفع الحجر إلى الأعلى مرّة واحدة بقوّة (a)

.(4)m (50) على سطح مائل طولهN رفع الحجر إلى الأعلى بقوّة (b)
.(0.5)m (100) لكلّ درجة سلمّ ارتفاعهاN رفع الحجر إلى الأعلى بقوّة (c)

نستنتج من الشكل (24) أنّ الطاقة الكامنة التثاقلية للحجر لا ترتبط 
بكيفية الوصول إلى ارتفاع معينّ ، ولكن بالمسافة الرأسية بين هذا المكان 

والمستوى المرجعي .
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كرة كتلتها m = (0.1)kg موضوعة على المستوى الأفقي المارّ بالنقطة B كما في الشكل (25) .
اِستخدم عجلة الجاذبية الأرضية g = (10)N/kg ، واحسب الطاقة الكامنة التثاقلية للكرة بالنسبة إلى 

المستوى المرجعي B ، في كل من الحالات التالية:
(أ) عند المستوى الأفقي المارّ بالنقطة A الذي يرتفع عن المستوى الأفقي المارّ بالنقطة B مسافة 

.(40)cm
.B (ب) عند المستوى الأفقي المارّ بالنقطة

 B الذي ينخفض عن المستوى الأفقي المارّ بالنقطة C (جـ) عند المستوى الأفقي المارّ بالنقطة
.(50)cm مسافة

طريقة التفكير في الحلّ

حلِّل: اذُكر المعلوم وغير المعلوم .. 1

A

B

C

(40)cm

(50)cm

(شكل 25)

h أعلى المستوى المرجعي 
1
= (40)cm :المعلوم

h أسفل المستوى المرجعي
2
= (50)cm  

m = (0.1)kg : كتلة الكرة  
g = (10)N/kg : عجلة الجاذبية  

غير المعلوم:
الطاقة الكامنة التثاقلية؟

احُسب غير المعلوم .. 2

(أ) باستخدام معادلة حساب الطاقة الكامنة التثاقلية بالنسبة إلى مستوى أفقي وبالتعويض عن المقادير
المعلومة في المعادلة ، نحصل على:

 PE
g
 = m.g.h

. B المسافة العمودية بين موقع الكرة والمستوى المرجعي المارّ بالنقطة h حيث تساوي
 PE

g
 = + 0.1 ^ 10 ^ 0.4 = (+0.4)J
. B مقدار الطاقة الكامنة موجب لأنّ الكرة أعلى المستوى المرجعي

. PE
g
 = (0)J وبالتالي B لأنّ الكرة موجودة على المستوى المرجعي h = (0)m (ب)

 ، h
2
 = (50)cm وعلى بعد C المارّ بالنقطة B (جـ) بما أنّ الكرة موجودة أسفل المستوى المرجعي

فإنّ طاقة الوضع تساوي :
PE

g
 = -0.1 ^ 10 ^ 0.5 = (-0.5)J

مقدار الطاقة الكامنة سالب لأنّ الكرة أسفل المستوى المرجعي
قيِّم: هل النتيجة مقبولة؟. 3

الطاقة الكامنة التثاقلية قد تكون موجبة المقدار أو سالبة بحسب موضع الجسم بالنسبة إلى المستوى المرجعي .
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á«∏bÉãàdG ™°VƒdG ábÉW ‘ qÒ¨àdG 3.4
Change in Gravitational Potential Energy
ΔPE هي نتيجة تغيرّ موضع مركز 

g
إنّ التغيرّ في طاقة الوضع التثاقلية لجسم 

ًّا بين نقطتين بالنسبة إلى المستوى المرجعي الأفقي ، أي أنّ: ثقل الجسم رأسي

ΔPE
g
 = PE

f
 - PE

i
= mg (h

f 
- h

i
) = mgΔh

h) وبالتالي 
f 
- h

i
ًّا إلى أعلى تكون 0 < ( فإذا تحرّك مركز كتلة الجسم رأسي

ΔPE . أماّ الشغل المبذول من وزن الجسم خلال الإزاحة 
g
تكون 0 < 

ًّا إلى  نفسها يكون W = -mgh ، بينما إذا تحرّك مركز كتلة الجسم رأسي
.ΔPE

g
h) وبالتالي تكون 0 > 

f 
- h

i
أسفل تكون 0 > (

يكون  نفسها  الإزاحة  خلال  الجسم  وزن  من  المبذول  الشغل  أماّ 
طاقة  مقدار  في  التغيرّ  أن  نلاحظ  أن  يمكننا  وعليه   W = +mgh

الجسم  وزن  من  المبذول  الشغل  معكوس  يساوي  التثاقلية  الوضع 
. ΔPE

g
 = - W

W
العمودية  الإزاحة  خلال 

 (3) ∫Éãe

5) تمّ رفعها رأسياً من النقطة A التي ترتفع m(2) عن سطح  )kg الشكل (26) يوضّح كتلة مقدارها
(g = (10)m/s2 اِستخدم). (12) عن سطح الأرضm التي ترتفع B الأرض إلى نقطة

. B إلى A (أ) احُسب الشغل المبذول من وزن الجسم خلال الإزاحة من
. B إلى A (ب) احُسب التغيرّ في طاقة الوضع التثاقلية للجسم خلال تحريكه من

(جـ) قارِن بين الشغل المبذول للوزن والتغيرّ في طاقة الوضع التثاقلية .
طريقة التفكير في الحلّ

1 .

h
f

h
i

m

B

A

(شكل 26)

حلِّل: اذُكر المعلوم وغير المعلوم . 
h عن المستوى المرجعي

i
= (2)m :المعلوم

h عن المستوى المرجعي
f
= (12)m  

m = (5)kg كتلة الجسم  
g = (10)N/kg عجلة الجاذبية  

غير المعلوم: (أ) الشغل الناتج عن وزن الجسم؟
(ب) التغيرّ في مقدار الطاقة الكامنة التثاقلية؟  

(جـ) المقارنة بين الشغل والتغير في مقدار الطاقة الكامنة التثاقلية؟  
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احُسب غير المعلوم .. 2
(أ) باستخدام معادلة الشغل وبالتعويض عن المقادير المعلومة ، نحصل على:

W = F . d . cos θ = m.g.h cos 180
 = 5 ^ 10 ^ (10)(-1) = (-500)J

(ب) باستخدام معادلة التغيرّ في مقدار الطاقة الكامنة التثاقلية بالنسبة إلى مستوى أفقي وبالتعويض عن 
المقادير المعلومة في المعادلة ، نحصل على:

ΔPE
g
 = m.g (h

f
 – h

i
) = 5 ^ 10 ^ (12 - 2) = (+500)J

ΔPE
g
 = -W :ّ(جـ) بالمقارنة بين الإجابات في كلّ من الجزئين السابقين نستنتج أن

قيِّم: هل النتيجة مقبولة؟. 3
النتيجة مقبولة لأنهّا تؤكّد ما سبق شرحه .

5 .Mechanical Energy  á«μ«fÉμ«ŸG ábÉ£dG
تمثلّ الطاقة الميكانيكية لجسم أو نظام ما بالطاقة اللازمة لتغيير موضعه أو تعديله 

وهي تساوي مجموع طاقة الجسم الحركية وطاقته الكامنة .
تمثَّل الطاقة الميكانيكية بالعلاقة الرياضية التالية: 

ME = KE + PE

2-1 ¢SQódG á©LGôe

أوّلاً - اذُكر قانون الطاقة الحركية.

ثانيًا - احُسب الطاقة الحركية لسياّرة كتلتها kg(1500) تتحرّك على 

. (72)km/h طريق أفقية بسرعة
 (100)g ثالثًا - احُسب الطاقة الكامنة التثاقلية لكرة صغيرة كتلتها

موجودة على ارتفاع cm(80) عن سطح الأرض . اِستعمِل عجلة 
. g = (10)N/kg الجاذبية الأرضية

رابعًا - تفّاحة كتلتها g(150) موجودة على غصن ارتفاعه m(3) عن 

سطح الأرض الذي يعُتبرَ السطح المرجعي للطاقة الكامنة التثاقلية .
(أ) احُسب الطاقة الحركية للتفّاحة أثناء وجودها على الغصن .

(ب) احُسب الطاقة الكامنة التثاقلية للتفّاحة وهي معلَّقة على الغصن .
(جـ) اِستخدم قانون الطاقة الحركية لتجد سرعة التفّاحة بعد سقوطها 

مسافة m(2) من موضعها في غياب الاحتكاك مع الهواء .
 (2)m (د) احُسب الطاقة الميكانيكية للتفّاحة عند وجودها على بعُد

أسفل موضعها الابتدائي .
(هـ) احُسب مقدار الطاقة الحركية للتفّاحة لحظة اصطدامها بالأرض 

في غياب الاحتكاك مع الهواء .
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خامسًا - كتلة مقدارها kg(5) رُبِطت بخيط عديم الكتلة يمرّ في 

تجويف بكرة كتلتها kg(2) ، ونصف قطرها cm(25) ، مثبَّتة لتدور 
من دون احتكاك حول محور يمرّ بمركزها (شكل 27) . في لحظة 
t = 0 أفُلِت الجسم من ارتفاع m(1.5) من سكون ليسقط باتجّاه 
سطح الأرض جاعلاً البكرة تدور بسرعة زاوية ω حول محورها . 

.I = 12 mr2 علمًا أنّ القصور الذاتي الدوراني للبكرة يساوي
(أ) اكُتب معادلة الطاقة الحركية للنظام المؤلَّف من الكتلة والبكرة 

R

5(kg)

(شكل 27)

 . t عند زمن
(ب) اكُتب معادلة الشغل الناتج عن 

وزن الجسم الساقط . 
(جـ) ما مقدار الشغل الناتج عن 

وزن البكرة حول المحور الحامل 
للنظام؟

(د) اِستخدم قانون الطاقة الحركية 
لحساب سرعة الجسم لحظة 

ارتطامه بالأرض .
الدوراني I = (20)kg.m2 يدور  الذاتي  إطار درّاجة قصوره  سادسًا - 

(20)rad/s حول محور عمودي يمرّ في مركزه بسرعة زاوية مقدارها
تعرّض لقوّة احتكاك مماسّية أدتّ إلى انخفاض سرعته إلى سرعة 

 . (10)rad/s زاوية مقدارها
(أ) احُسب الطاقة الحركية الدورانية الابتدائية لإطار الدرّاجة .

(ب) احُسب التغيرّ في مقدار الطاقة الحركية الدورانية للإطار بعد 
تأثير قوّة الاحتكاك عليها .

(جـ) اِستخدم قانون الطاقة الحركية لحساب مقدار الشغل الناتج عن 
قوّة الاحتكاك المبذولة على الإطار . 
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يعرّف الطاقة الميكانيكية الماكروسكوبية . 
يعرّف الطاقة الداخلية للنظام . 
يعرّف مفهوم الطاقة الكليّة . 
يعرّف قانون حفظ (بقاء) الطاقة الكليّة في الأنظمة المعزولة . 
يستنتج قانون حفظ (بقاء) الطاقة الميكانيكية في الأنظمة المعزولة . 
يستنتج شغل قوى الاحتكاك في غياب حفظ (بقاء) الطاقة الميكانيكية في الأنظمة المغلقة . 

(شكل 28)
توليد الكهرباء باستخدام سقوط المياه من السدود .

لقد ختمنا درسنا السابق بتعريف الطاقة الميكانيكية التي تساوي مجموع 
الطاقة الكامنة والطاقة الحركية . وفي هذا الدرس سنتعمّق أكثر في مفهوم 

الطاقة الميكانيكية وسنكتشف في سياقه أنهّا تنقسم إلى قسمين: طاقة 
ميكانيكية ماكروسكوبية وطاقة ميكانيكية ميكروسكوبية .

وسنتعرّف مفهوم الطاقة الكليّة ومبدأ حفظ (بقاء) الطاقة وتحوّلها من 
شكل إلى آخر من دون أن تتولدّ أو تفقد ، وسنكتشف أهمّية استخدام هذا 

المبدأ في تفسير مسائل فيزيائية كثيرة وحلهّا .

3-1 ¢SQódGábÉ£dG (AÉ≤H) ßØM

Conservation of Energy

34



(شكل 29)
الطاقة الحركية الميكروسكوبية هي جزء من 
الطاقة الداخلية . قوى التجاذب بين الجزيئات 

ترتبط بطاقة الوضع .

1 .á«Hƒμ°ShôcÉŸG á«μ«fÉμ«ŸG ábÉ£dG
Macroscopic Mechanical Energy

يوصف الجسم عندما يملك أبعادًا يمكن قياسها ورؤيتها بالعين بالجسم 
ا التي لا ترُى  الماكروسكوبي ، فيما توصف تلك الأجسام الصغيرة جدًّ
بالعين المجرّدة بالأجسام الميكروسكوبية . تجدر الإشارة إلى أن كلّ 

الأجسام التي تناولناها سابقًا هي أجسام ماكروسكوبية .
عندما يتحرّك جسم ماكروسكوبي بسرعة خطيّة v، نقول إنّ هذا الجسم 
يمتلك طاقة حركية ماكروسكوبية تحُسب بالعلاقة التي درسناها سابقًا: 

KE = 12 m.v2

أماّ إذا وُضِع هذا الجسم  الماكروسكوبي على ارتفاع محدّد من مستوى 
مرجعي فيختزن طاقة كامنة ماكروسكوبية (طاقة وضع تثاقلية) يعُبَّر عنها 

بالعلاقة التالية:
PE

g
 = m.g.h

وتختزن الأجسام الماكروسكوبية المرنة طاقة كامنة ماكروسكوبية (طاقة 
وضع مرونية) تحُسب بالعلاقة التالية:

PE
e
 = 12 k.x2

وإنّ مجموع الطاقة الحركية والطاقة الكامنة للجسم الماكروسكوبي يسُمىّ الطاقة 
ME

macro
الميكانيكية الماكروسكوبية 

ME
macro

 = KE
macro

 + PE
macro

وهي تساوي الطاقة الميكانيكية التي عرفناها في الدروس السابقة ولا 
تختلف عنها ، لهذا سنعتمد في سياق الدرس تسميتها طاقة ميكانيكية من 

دون الإشارة إلى أنهّا ماكروسكوبية ، ولأنّ الطاقة الميكروسكوبية التي 
سنتناولها سنطُلِق عليها اسم الطاقة الداخلية تسهيلاً لاستخدامها ومنعًا 

للخلط بين ماكرو وميكرو .

2 . ábÉ£dG) á«Hƒμ°Shôμ«ŸG á«μ«fÉμ«ŸG ábÉ£dG
U (á«∏NGódG

Microscopic Mechanical Energy
هل يختزن كوب الماء الموضوع على الطاولة طاقة (شكل 29)؟ ما رأيك لو 
نظرْتَ إليه من وجهة نظر مقاييس ذرّية ميكروسكوبية؟ هل تعتقد أنّ جزيئاته 

متحرّكة أو ساكنة؟ هل نتجت طاقة كامنة عن قوى التجاذب بين جزيئاته؟ 
ًّا  تتألفّ الأجسام الصلبة أو السائلة أو الغازية من جزيئات تتحرّك عشوائي

وبشكل دائم . تزداد سرعة تحرّك هذه الجزيئات بارتفاع درجة حرارة الجسم . 
الذي تسببّه الطاقة الحركية الميكروسكوبية .
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(شكل 30)
هرمان فون هلمهولتز (1821 - 1894)

طبيب وفيزيائي ألماني حقّق إنجازات هامّة في 
مجال الفيزياء وفي مواضيع مختلِفة منها حفظ 

الطاقة ، الديناميكا المائية، الديناميكا الكهربائية 
ووضع نظريات في الكهرباء ، كما كان له 

إسهامات مهمّة في مجال البصريات إلى جانب 
دراسة الأرصاد الجوّية .

وتتغيرّ الروابط بين الجزيئات في حال تغيرّت حالة المادةّ في نظام ما ، كانصهار 
الجليد مثلاً . الطاقة التي تتبادلها جسيمات النظام وتؤديّ الى تغيير حالته بتغيير

طاقة الربط بين أجزائه تسمى بالطاقة الكامنة الميكروسكوبية وتنتج هذه الطاقة 
عن مختلف التأثيرات بين جسيمات النظام .

أماّ الطاقة الميكانيكية الميكروسكوبية فتساوي مجموع الطاقة 
نة لجسيمات النظام والطاقة الكامنة  الحركية الميكروسكوبية المكوِّ
الميكروسكوبية الناتجة عن مختلف التأثيرات بين جسيمات النظام:

ME
micro

 = KE 
micro

 + PE
micro

= U
الطاقة الميكانيكية الميكروسكوبية للنظام تسُمّى بالطاقة الداخلية ويرُمزَ 

لها بالحرف اللاتيني U وهي مجموع طاقات الوضع والحركة لجسيمات النظام . 
وفي سياق الدرس سنعتمد مصطلح الطاقة الداخلية U بدلاً من استخدام 

ME منعًا للالتباس بين ميكرو 
micro

الطاقة الميكانيكية الميكروسكوبية 
وماكرو كما أشرنا سابقًا .

3 .á«q∏μdG ábÉ£dG (AÉ≤H) ßØM
Conservation of Total Energy
 ME والطاقة الميكانيكية U لنظام ما: هي مجموع الطاقة الداخلية E الطاقة الكليّة

وتتمثلّ بالعلاقة الرياضية التالية:
E = ME + U

العالم الألماني هرمان فون هلمهولتز Hermann von Helmholtz (شكل 30) 
هو أوّل من تناول موضوع حفظ (بقاء) الطاقة الكليّة عندما قال إنّ الطبيعة 
تحتوي على مصادر طاقة لا يمكن بأيّ طريقة أن تزيد أو تنقص ، وكذلك 

كتب عالم الرياضيات الفرنسي بوانكاريه Poincare في أوائل القرن 
التاسع عشر أنّ هناك شيء ثابت لا يتغيرّ هو الطاقة .

في الأنظمة المعزولة المغلقة التي لا تتبادل طاقة مع محيطها تكون الطاقة 
الكليّة محفوظة . تحدث فقط تحوّلات للطاقة من شكل إلى آخر وهذا ما 

يسُمّى بقانون حفظ (بقاء) الطاقة وينصّ على:
”الطاقة لا تفنى ولا تستحدث من عدم ، ويمكن داخل أيّ نظام معزول أن تتحوّل من 

شكل إلى آخر ، فالطاقة الكليّة للنظام ثابتة لا تتغيرّ“ .
وتوضّح أمثلة متعدّدة معنى حفظ (بقاء) الطاقة الكليّة ، ففي الشكل (31) 
نجد أنّ جزءاً من الطاقة الكامنة المرنة يتحوّل إلى طاقة حركية ، ويتحوّل 
الجزء الباقي إلى طاقة حرارية نتيجة الاحتكاك . بالتالي ، فإنّ الطاقة الكليّة 
للنظام المعزول المؤلفّ من الأرض والسياّرة ، والهواء المحيط لم تتغيرّ .

(10)J PE
(8)J KE

(2)J طاقة حرارية

(شكل 31)
ليس هناك فقدان للطاقة ، لأن الطاقة الكامنة

المرنة (PE) قد تحوّلت إلى طاقة حركية (KE) وطاقة حرارية .
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كذلك إذا أخذنا نظامًا معزولاً مؤلفًّا من مظليّ والأرض والهواء المحيط 
(شكل 32) ، نلاُحِظ أنّ المظليّ الذي يهبط باستخدام المظلةّ ، يصل إلى 
سرعة حدّية ثابتة أي إلى طاقة حركية ثابتة لا تتغيرّ ، فيما تتناقص الطاقة 

الكامنة (الوضع) التثاقلية ، وبالتالي تتناقص طاقته الميكانيكية ما يفسّر 
سبب ارتفاع درجة حرارة الهواء المحيط والمظلةّ بحيث يتحوّل الجزء 
المفقود من الطاقة الكامنة التثاقلية المتناقصة إلى طاقة حرارية تؤديّ إلى 

إرتفاع درجة حرارة المظلةّ والهواء المحيط . تؤكّد هذه الأمثلة أنّ الطاقة 
الكليّة لنظام معزول محفوظة دائمًا لا تفنى ولا تزيد .

4 .∫hõ©e ΩÉ¶f ‘ á«μ«fÉμ«ŸG ábÉ£dG (AÉ≤H) ßØM
Conservation of Mechanical Energy in an Energy 
Isolated System

الطاقة الكليّة كما ذكرنا سابقًا هي مجموع الطاقة الميكانيكية والطاقة 
الداخلية ، والتغيرّ في الطاقة الكليّة يساوي مجموع التغيرّ في الطاقة 

الميكانيكية والتغير في الطاقة الداخلية ، أي أنّ:

ΔE = ΔME + ΔU

فلنأخذ نظامًا معزولاً مؤلفًّا من الأرض والكرة ، ولندرس الطاقة 
ا (شكل 33) . الميكانيكية للكرة أثناء سقوطها سقوطاً حرًّ

الطاقة الكليّة للنظام محفوظة ، أي أنّ ΔE = 0 ، وبإهمال الاحتكاك مع 
الهواء ، نستنتج أنّ الطاقة الداخلية للنظام لا تتغيرّ ، أي أنّ ΔU = 0 . هذا 

يعني أنّ الطاقة الميكانيكية للنظام ثابتة لا تتغيرّ بإهمال قوى الاحتكاك مع الهواء 
. ΔME = 0 ّأي أن ، ،  ،،  (ΔU = 0)

وهذا يعني أنّ:
ME

i 
= ME

f

KE
i
 + PE

i
 = KE

f
 + PE

f
 

PE
f
 – PE

i
 = -(KE

f
 – KE

i
)  

ΔPE = - ΔKE  

في الأنظمة المعزولة عندما تكون الطاقة الميكانيكية محفوظة يمكننا أن نستنتج أنّ 
التغيرّ في الطاقة الكامنة (الوضع) يساوي معكوس التغير في الطاقة الحركية .

طاقة حرارية

 ΔKE = 0

ΔKE = 0

ΔPE 

v = constant

(شكل 32)
الطاقة الحركية ثابتة ويتحوّل الانخفاض في 

الطاقة الكامنة التثاقلية إلى طاقة حرارية .

PE
i  ,  

KE
i

PE
f  ,  

KE
f

h
f

h
i

الأرض

(شكل 33)
عند سقوط الكرة ، تقلّ الطاقة الكامنة التثاقلية 

وتزداد الطاقة الحركية .
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L'

L
θ

m

G
0 h

m

O’

(شكل 34)

E
ME

PE
g

KE θ

(شكل 35)

إنّ دراسة التبادل بين الطاقة الحركية وطاقة الوضع التثاقلية في غياب 
الاحتكاك في حركة البندول هي أحد الأمثلة والتطبيقات على مبدأ حفظ 

الطاقة الميكانيكية في الأنظمة المعزولة .
فالبندول البسيط هو نظام ميكانيكي يظهر حركة دورية ويتألفّ من كتلة 

صغيرة m علُِّقت في خيط طوله L ، خفيف الكتلة مقارنة بالكتلة المعلقّة ، 
رُبِط طرفه الآخر بحامل عند النقطة ’O كما هو مبينّ في الشكل (34) .
θ وليرتفع 

m
إنّ سحب البندول البسيط من موضع الاستقرار ليصنع زاوية 

G عند موضع الاستقرار 
0
مسافة h عن المستوى الأفقي المارّ بمركز كتلته 

يجعله يكتسب طاقة وضع تثاقلية تتمثلّ بالمعادلة التالية:
PE حيث:. 1

g
 = mgh

cos θ = L'
L

∴ L' = L cos θ
2 .∴ h = L -L'

بالتعويض في المعادلة 2 ،
∴ L' = L cos θ

m
 ⇒ h = L - L cos θ

m

∴ h = L (1 - cos θ
m
)

∴ PE
g
 = mgL(1 - cos θ

m
)

وبالتعويض في المعادلة 1 ، وبما أنّ البندول في هذه الحالة ساكن (لا 
يتحرّك) ، فإنّ طاقته الحركية تساوي صفرًا، وعليه نستنتج أنّ الطاقة 

الميكانيكية للنظام تساوي :
 ME = PE

g
 = mgL(1 - cos θ

m
)

وبعد إفلات البندول من السكون ، وفي أيّ لحظة بين نقطة الإفلات 
G يكتسب البندول البسيط طاقة حركية ويخسر جزءاً من طاقة 

0
والنقطة 

الوضع التثاقلية ، وعليه نكتب الطاقة الميكانيكية في هذه اللحظة: 

 ME = 1
2  mv2 + mgL(1 - cos θ)

G تصبح طاقة وضعه التثاقلية تساوي 
0
وعندما يصل البندول إلى النقطة 

الصفر وتصبح طاقته الحركية قيمة عظمى وتساوي:

 KE
max

 = 1
2  mv2

وتصبح الطاقة الميكانيكية تتمثلّ بالمعادلة: 
 ME

G0
 = 1

2  mv2

إنّ غياب الاحتكاك حول النقطة ’O ومع الهواء ، يجعل الطاقة الميكانيكية 
للنظام محفوظة أي أنّ:

 ME = ME
G0
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إنّ تبادل الطاقة الحركية وطاقة الوضع التثاقلية بغياب الاحتكاك بدلالة 
ًّا بالشكل (35) ، حيث يمثلّ الخطّ الأفقي  تغيرّ الزاوية θ يمكن تمثيلها بياني
حفظ الطاقة الميكانيكية، بينما يمثلّ المنحنى الأخضر تغيُّر الطاقة الحركية 
التي تساوي صفرًا عندما يكون للزاوية θ أكبر مقدار ، بينما يمثلّ المنحنى 
 G

0
الأحمر طاقة الوضع التثاقلية والتي تساوي صفرًا عند موضع الاستقرار 

حيث يكون مقدار h مساوياً لصفر .

(1) ∫Éãe

ًّا سقطت من سكون  كرة موجودة على ارتفاع m(2) من سطح الأرض الذي يعُتبرَ مستوًى مرجعي
في غياب الاحتكاك لتصطدم بالأرض (شكل 36) . اِستخدم قانون حفظ (بقاء) الطاقة الميكانيكية 

. g = (10)N/kg لحساب سرعة الكرة لحظة الاصطدام علمًا أنّ عجلة الجاذبية الأرضية
طريقة التفكير في الحلّ

1 .

EP
g  

= 0

(2)m

الأرض

mg

(شكل 36)

حلِّل: اذُكر المعلوم وغير المعلوم . 
المعلوم: h = (2)m عن المستوى المرجعي

g = (10)N/kg عجلة الجاذبية  
غير المعلوم:

v
f
سرعة الاصطدام بالأرض ? =  

احُسب غير المعلوم .. 2

في غياب الاحتكاك مع الهواء ، الطاقة الميكانيكية للنظام
(الكرة - الأرض) محفوظة ، أي أنّ:

الطاقة الكامنة التثاقلية تقلّ والطاقة الحركية تزداد .
 ΔME = 0
ME

i
 = ME

f

KE
i
 +PE

i
 = KE

f
 + PE

f

. KE
i
وبما أنّ السرعة الابتدائية تساوي صفرًا ، فإنّ 0 = 

. PE
f
وعند وصول الكرة إلى الأرض يكون الارتفاع يساوي صفرًا ، أي 0 = 

وبالتعويض عن المقادير المعلومة ، نحصل على:

0 + m.g.h = 12 m.v2
f
 + 0

v
f
 = �2g.h = �40 = (6.32)m/s

قيِّم: هل النتيجة مقبولة؟. 3
معادلة مقدار السرعة v هي نفسها التي توصّلنا إليها في الدرس السابق باستخدام قانون الطاقة 

الحركية وهذا يؤكّد صحّة الحلّ بالإضافة إلى أنّ الإجابة منطقية ومقبولة وتتناسب مع المقادير 
المعطاة .
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5 .∫hõ©e ΩÉ¶f ‘ á«μ«fÉμ«ŸG ábÉ£dG ßØM ΩóY
Non Conservation of Mechanical Energy in Energy 
Isolated System

 U كما ذكرنا سابقًا إنّ الطاقة الكليّة للنظام هي مجموع الطاقة الداخلية
والطاقة الميكانيكية ME ، وإنّ التغيرّ في الطاقة الكليّة يكون نتيجة التغيرّ 

في الطاقة الداخلية أو الميكانيكية أو الاثنين معًا .

ΔE = ΔME + ΔU

ومع حفظ الطاقة الكليّة للنظام المعزول ΔE = 0 ، نستنتج أنّ التغيرّ في 
الطاقة الميكانيكية يساوي معكوس التغيرّ في الطاقة الداخلية أي أنّ:

ΔME = -ΔU

وبما أنّ الشغل الناتج عن قوى الاحتكاك المؤثرّة على أجزاء النظام تتحوّل 
إلى طاقة داخلية في النظام تعمل على تغيير درجة حرارته أو حالته الفيزيائية 

أو الاثنين معًا على التتابع ، فإنهّ من الممكن أن نستبدل مقدار الطاقة 
الداخلية ΔU في المعادلة السابقة بمقدار الشغل الناتج عن قوة الاحتكاك 

لنكتب المعادلة:
ΔME = - W

f

أي أنّ التغيرّ في الطاقة الميكانيكية في نظام معزول يساوي الشغل الناتج 
عن مجموع قوى الاحتكاك f∑ المؤثرّة في النظام .

وباعتبار قوة الاحتكاك قوة ثابتة المقدار ، نستنتج أنّ التغيرّ في مقدار 
الطاقة الميكانيكية يتمثلّ بالمعادلة:

ΔME = - f ^ d

حيث تمثلّ f مقدار قوة الاحتكاك وتمثلّ d مقدار الإزاحة .

(2) ∫Éãe

صندوق صغير كتلته m = (100)g أفُلِت من سكون من النقطة A على المستوى المائل الخشن 

AB = (4)m الذي يصنع زاوية ميل α مع المستوى الأفقي مقدارها 30º كما في الشكل (37) . 

احُسب مقدار قوّة الاحتكاك على المستوى المائل إذا ما وصل الصندوق إلى النقطة B عند نهاية 

(g = (10)N/kg) ّاِعتبِر أنّ قوّة الاحتكاك قوّة ثابتة وأن . v
B
 = (6)m/s المستوى المائل بسرعة مقدارها

áHÉLEG ™e ádCÉ°ùe

ما مقدار الطاقة الكامنة . 1
 (8 )N التثاقلية لحجر وزنه

وُضِع على ارتفاع m(6) عن 
سطح الأرض؟

وما مقدار الطاقة التي يفقدها 
الجسم عندما يصُبِح على 

ارتفاع m(4.5) عن سطح 
الأرض؟

(-12)J ، (48)J :الإجابة
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äÉHÉLEG ™e ¿ÉàdCÉ°ùe

احُسب سرعة انطلاق جسم . 1
كتلته g(50) موضوع على 
سطح أملس ملاصق لزنبرك 
ًّا على السطح  موضوع أفقي
نفسه بحيث تساوي الطاقة 

الكامنة التثاقلية صفرًا ، 
ومضغوط عن طوله الأصلي 

بإزاحة قدرها cm(20) ، علمًا 
أنّ ثابت المرونة للزنبرك 

 . k = (100)N/m يساوي
(8.94)m/s :الإجابة

اكُتب معادلة تعبرّ عن الطاقة . 2
الكليّة للنظام في الحالتين 

التاليتين:
(أ) طاقة داخلية ثابتة وطاقة 

ميكانيكية متغيرّة .
(ب) طاقة داخلية متغيرّة وطاقة 

ميكانيكية ثابتة .
 ΔE

T
 = ΔME (أ) :الإجابة

 ΔE
T
 = ΔU (ب)  

(™HÉJ) (2) ∫Éãe

طريقة التفكير في الحلّ

1 .
PE

g  
= 030º

A

B

(شكل 37)

حلِّل: اذُكر المعلوم وغير المعلوم . 
m = (0.1)kg : المعلوم: كتلة الصندوق

α = 30º : زاوية ميل المستوى المائل  
v

A
= (0)m/s : السرعة الابتدائية  

v
B
= (6)m/s : B السرعة عند النقطة  

AB = (4)m طول المستوى  
غير المعلوم:

f = ? مقدار قوّة الاحتكاك
احُسب غير المعلوم .. 2

في وجود قوّة الاحتكاك بين الصندوق والمستوى المائل ، نقول إنّ 
الطاقة الميكانيكية للنظام المعزول (الصندوق - الأرض) غير محفوظة 

. ΔME ≠ 0 
ΔME = - ΔU وبالتالي

وبما أنّ الطاقة الداخلية هي نتيجة الشغل الناتج عن قوّة الاحتكاك فإنّ 
 ΔU = W

f
مقدارها يساوي مقدار الشغل الناتج عن قوّة الاحتكاك ، أي 

ولهذا نكتب:

 
ME

f
 – ME

i
 = - W

f

لنفترض أنّ قوّة الاحتكاك قوّة منتظمة معاكِسة لاتجّاه الحركة نحصل 
على:

(12 m.v2
f
 + m.g.h

f
) – (12 m.v2

i
 + m.g.h

i
) = (f ^ AB ^ cos 180)

 h
f
v لأنّ الصندوق انطلق من سكون وعن 0 = 

i
وبالتعويض عن 0 = 

ولأنّ الصندوق عند النقطة B يكون على المستوى المرجعي ، نكتب:
(1
2m.v2

f
 + 0) – (0 + m.g.h

i
) = (f ^ AB ^ cos 180)

وبالتعويض عن المقادير المعلومة الأخرى وحيث:
h نحصل على:

i
 = AB sin 30 = (2)m

 (1
2 ^ 0.1 ^ 36) - ( 0.1 ^ 10 ^ 2) = -f ^ 4

-0 .2 = - 4f
∴ f = 0.2

4  = (0.05)N 
قيِّم: هل النتيجة مقبولة؟. 3

مقدار قوّة الاحتكاك معقول ويمكن التحقّق منه باستخدام قانون الطاقة 
الحركية .
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3-1 ¢SQódG á©LGôe

ف الطاقة الكليّة . أولاً - عرِّ

ثانيًا - قارِن بين الطاقة الداخلية والطاقة الميكانيكية لنظام ما .

ثالثًا - الجسم c الموضّح في الشكل (38) كتلته m = (0.1)kg يستطيع 

أن يتحرّك على المستوى الخشن حيث تكون قوّة الاحتكاك ثابتة 
المقدار وتساوي N(5. 0) على طول المسار المؤلفّ من مسار أفقي 

OA وطوله m(2) والمسار AB = (1)m المائل بالنسبة إلى المستوى 
. α =30º الأفقي بزاوية

 O
α

A(2)m
(1)m

B
C
O

v
0

(شكل 38)

. O من النقطة v
0
فإذا أطُلِق c بسرعة ابتدائية 

واعتبرنا المستوى الأفقي المارّ بالنقطة O هو المستوى المرجعي 
بحيث تساوي الطاقة الكامنة التثاقلية صفرًا ، وعجلة الجاذبية الأرضية 

. g = (10)N/kg
(أ) اِستخدم قانون الطاقة الحركية لتجد علاقة رياضية بين السرعة 

. A عند مرور الجسم بالنقطة v
A
v والسرعة 

0
الابتدائية 

v إذا بلغت سرعة الجسم لحظة وصوله 
0
(ب) اِستنتج السرعة الابتدائية 
. v

B
 = (1)m/s B إلى النقطة

m = (100) الموضّح في الشكل (39) وكتلته S رابعًا - أفُلِت الجسم
g من النقطة A على المسار AB . ABC مستوى مائل أملس يصنع زاوية 

L ، في حين أنّ المستوى 
1
30º مع المستوى الأفقي الذي يبلغ طوله 

الأفقي BC خشن وقوّة الاحتكاك ثابتة تساوي f = (0.1)N ويبلغ طوله 
. L

2

(أ) إذا كانت سرعة الجسم لحظة مروره بالنقطة B تساوي m/s(4) ، اِستخدم 
قانون حفظ (بقاء) الطاقة الميكانيكية لإيجاد طول الجزء AB من المسار .
 . C ليتوقفّ عند النقطة BC (ب) أكمَل الجسم مساره على المسار

 . BC احُسب طول المسار
 m = (200)g الموضّح في الشكل (40) كتلته c خامسًا - الجسم

يستطيع أن يتحرك من دون احتكاك على المستوى المائل الأملس الذي 
يصنع زاوية °30 درجة مع المستوى الأفقي .

أطُلِق الجسم في اللحظة t = (0)s من النقطة O على المستوى المائل 
. v

0
 = (4)m/s بسرعة ابتدائية

äÉHÉLEG ™e ádCÉ°ùe

 (10)g كتلة نقطية مقدارها
أطُلِقت رأسياً إلى أعلى من 
 v

0
النقطة 0 بسرعة ابتدائية 

مقدارها m/s(10). أهمِل 
احتكاك الهواء .

(أ) احُسب الطاقة الميكانيكية 
للكتلة عند النقطة 0 علمًا أنّ 
المستوى المارّ بالنقطة 0 هو 

المستوى المرجعي .
(ب) اِستنتِج مقدار الطاقة 

الميكانيكية عند أعلى نقطة 
تصل إليها الكتلة .

(جـ) اِستنتِج الارتفاع الأقصى 
الذي تصل إليه الكتلة .

الإجابات:
(0.5)J (أ)

 (0.5)J (ب)
(5)m (جـ)

α
A

B
S

C

(4)m/s

(شكل 39)

α

x
v

0

C
O

A

(شكل 40)
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د موضع الجسم في أيّ لحظة على المستوى المائل بالبعد حدِّ
x = OA . اِستخدم المستوى الأفقي المارّ بالنقطة O كمستوى 

. g = (10)N/kg مرجعي ، وعجلة الجاذبية
(أ) احُسب الطاقة الميكانيكية للنظام.

 . x (ب) أوجِد الصيغة الرياضية لطاقة الجسم الكامنة التثاقلية بدلالة البعد
ًّا كلاًّ من الطاقة الميكانيكية  (جـ) اِختر مقياس رسم مناسب ومثِّل بياني

. x والطاقة الكامنة التثاقلية بدلالة البعد
(د) احُسب ارتفاع الجسم عن المستوى الأفقي عندما تكون سرعته 

. (1)m/s
سادسًا - بندول بسيط مؤلَّف من كتلة نقطية مقدارها m = (200)g معلَّقة 

بطرف خيط عديم الوزن غير قابل للتمدّد طوله L = (1)m ومثبَّت من 
طرفه الآخر بالنقطة O على حامل كما في الشكل (41) .

أزُيحت الكتلة من موضع الاستقرار مع إبقاء الخيط مشدودًا بزاوية 
. O وأفُلِتت من سكون للتحرّك حول المحور المارّ بالنقطة θ

m
= 60º

(المستوى المارّ بمركز ثقل الجسم عند موضع الاتزّان يمثلّ 
المستوى المرجعي للنظام (البندول ، الحامل ، الأرض) .

ًّا  بإهمال الاحتكاك وباستخدام أدوات مخبرية مناسِبة، تمّ رسم بياني
كلاًّ من الطاقة الميكانيكية ، والحركية ، والطاقة الكامنة التثاقلية للنظام 

(البندول ، الحامل ، الأرض) بدلالة الزاوية θ في الشكل (42) .

x

x

E

-60 +60

1
2
3 θ

(شكل 42)

د أيّ نوع من الطاقة يمثلّها كلّ من الرسوم البيانية الثلاثة معلِّلاً  (أ) حدِّ
إجابتك .

(ب) اِستنتِج مقدار الطاقة الميكانيكية للنظام .
(جـ) اكُتب بالنسبة إلى الزاوية θ الصيغة الرياضية للطاقة الكامنة التثاقلية .

(د) اكُتب بالنسبة إلى الزاوية θ الصيغة الرياضية للطاقة الحركية .
ًّا الزاوية التي تتساوى عندها الطاقة الحركية والطاقة  (هـ) اِستنتِج رياضي

الكامنة التثاقلية .

θ

O

L θ
m

(شكل 41)
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WorkالشغلIsolated Systemأنظمة معزولة

Kinetic Energyالطاقة الحركيةEnergyالطاقة

Potential Energyالطاقة الكامنةInternal Energyالطاقة الداخلية

الطاقة الكامنة (الوضع) التثاقلية
 Gravitational

Potential Energy
الطاقة الكامنة المرنة

 Elastic Potential

Energy

طاقة ميكانيكية ماكروسكوبية
 Macroscopic

Mechanical Energy
Constant Forceقوّة ثابتة

Varying Forceقوّة متغيرّة

π°üØdG »a á°ù«FôdG QÉμaC’G

ِّرة .  يحدث الشغل بإزاحة جسم في اتجّاه القوّة المؤث
F تسببّ إزاحة AB يحُسب بالعلاقة التالية:  الشغل الناتج عن أيّ قوّة منتظمة متجّهة 

W = F .AB = F ^ AB ^ cos θ
الشغل الناتج عن قوّة متغيرّة يساوي المساحة تحت منحنى القوّة بدلالة الإزاحة . 
الطاقة هي المقدرة على إنجاز شغل . 
الطاقة الحركية هي الشغل الذي ينجزه الجسم بسبب حركته . 
ِّرة في الجسم في فترة زمنية محدّدة   قانون الطاقة الحركية: الشغل الناتج عن محصّلة القوّة الخارجية المؤث

يساوي التغيير في طاقته الحركية في الفترة نفسها .
الطاقة الكامنة هي طاقة يختزنها الجسم وتسمح له بإنجاز شغل للتخلصّ منها . 
ME هي مجموع الطاقة الحركية  

macro
الطاقة الميكانيكية وتسُمّى أيضًا الطاقة الميكانيكية الماكروسكوبية 

والطاقة الكامنة للجسم الماكروسكوبي .
الطاقة الداخلية وتسُمّى أيضًا الطاقة الميكانيكية الميكروسكوبية تساوي مجموع الطاقة الحركية  

نة لجسيمات النظام ، والطاقة الكامنة الميكروسكوبية الناتجة عن مختلفَ التأثيرات  الميكروسكوبية المكوِّ
بين جسيمات النظام .

 . ME والطاقة الميكانيكية U لنظام ما هي مجموع الطاقة الداخلية E الطاقة الكليّة
ينصّ قانون حفظ الطاقة على التالي:“ الطاقة لا تفنى ولا تسُتحدث من عدم ، ويمكن للطاقة داخل أيّ نظام  

معزول أن تتحوّل من شكل إلى آخر ، فالطاقة الكليّة للنظام ثابتة لا تتغيرّ“ .
في الأنظمة المعزولة حيث تكون الطاقة الميكانيكية محفوظة نستنتج أنّ التغيرّ في الطاقة الكامنة يساوي  

معكوس التغيرّ في الطاقة الحركية .
عند وجود قوى احتكاك في نظام معزول ، التغيرّ في الطاقة الميكانيكيةّ لنظام ما يساوي معكوس التغيرّ في  

الطاقة الداخلية .
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استخدم المصطلحات الموضّحة في الشكل التالي لرسم خريطة مفاهيم تنُظمّ معظم الأفكار التي احتواها الفصل .

الطاقة الكامنةالطاقة الميكانيكية
الطاقة الداخلية

ΔME = 0
الطاقة الكليّة

الطاقة المرنة الطاقة الحركية

ΔME = -ΔU
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  ضع علامة (P) في المربعّ الواقع أمام الإجابة الأنسب في كلّ ممّا يلي:
الطاقة الحركية هي كمّية فيزيائية:. 1

 متجّهة  موجبة
 موجبة أو سالبة  سالبة

جسم كتلته kg(1) موجود على مسافة m(10) أسفل المستوى المرجعي ، الطاقة الكامنة التثاقلية . 2
للنظام المؤلفّ من الجسم والأرض حيث عجلة الجاذبية الأرضية g = (9.8)N/kg تساوي:

 (98)J  (-98)J 
 (-89)J  0 

الطاقة الكامنة الميكروسكوبية: . 3
 تتغيرّ أثناء تغيرّ حالة النظام .

 تتغيرّ أثناء تغيرّ درجة حرارة النظام .
 لا تتغيرّ بتغيرّ حالة النظام .

 تتغيرّ مع تغيرّ الطاقة الحركية الميكروسكوبية . 
ا في غياب الاحتكاك:. 4 الطاقة الكامنة التثاقلية لجسم يسقط سقوطاً حرًّ

 تزداد على طول المسار .
 تتناقص على طول المسار .

 تبقى ثابتة المقدار لغياب الاحتكاك .
 تتناقص في بدء الحركة ومن بعدها تصبح منتظمة عند وصول الجسم إلى سرعة حدّية .

∂JÉeƒ∏©e øe ≥≤ëJ

 أجب على الأسئلة التالية:
ما الشروط الواجب توفرّها لإنجاز شغل؟. 1
يدور القمر الصناعي حول الأرض بمدار دائري مركزه مركز الأرض ، فما مقدار الشغل الناتج . 2

ِّرة فيه؟ ولماذا؟ عن الجاذبية الأرضية المؤث
هل مقدار الشغل لرفع جسم من مستوى مرجعي إلى مرتفع معينّ باستخدام مستوى مائل يتغيرّ . 3

بتغيرّ زاوية ميل المستوى المائل في غياب الاحتكاك؟
ما الشرط الذي ينبغي توفرّه لتكون الطاقة الميكانيكية لنظام معزول محفوظة؟. 4
 متى تكون الطاقة الكليّة للنظام محفوظة؟. 5

∂JGQÉ¡e øe ≥≤ëJ

حلّ المسائل التالية:

(شكل 43)

(100)g
G

0

60°

 . g = (10)m/s2 حيث يلزم الأمر اِعتبر أنّ عجلة الجاذبية الأرضية
بندول بسيط مؤلَّف من كتلة نقطية m = (100)g مربوطة بخيط عديم الوزن ، . 1

لا يتمدّد ، طوله cm(40) ، سُحِبت الكتلة مع إبقاء الخيط مشدوداً من وضع 
الاتزّان العمودي بزاوية 60º وأفُلِتت من دون سرعة ابتدائية لتهتزّ في غياب الاحتكاك مع الهواء .

G ليكون المستوى المرجعي .
0
فلنعتبر المستوى الأفقي المارّ بمركز كتلة كرة البندول عند حالة الاتزّان 

(أ) احُسب الطاقة الميكانيكية للنظام .
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 . G
0
(ب) اِستنتِج سرعة الكتلة لحظة مرورها بالنقطة 

(جـ) احُسب مقدار الزاوية عندما تتساوى الطاقة الحركية والطاقة الكامنة التثاقلية .
سقط جسم كتلته kg(10) من سكون في غياب الاحتكاك من ارتفاع h عن سطح الأرض .. 2

. (10)m (أ) احُسب سرعته بعد أن يقطع مسافة
(10)m (ب) احُسب مقدار القوّة المنتظمة التي تؤثرّ في الجسم لتوقِفه بعد أن قطع المسافة السابقة

وبعد أن يقطع إزاحة m(1) من لحظة تأثير القوّة .
3 . (0.5)kg اِستخدم قانون الطاقة الحركية لحساب مقدار القوّة المنتظمة التي جعلت كتلة مقدارها

تنطلق من سكون لتصل إلى سرعة m/s(60) بعد إزاحة مقدارها m(100) على سطح خشن 
. (93)N حيث قوّة الاحتكاك ثابتة وتساوي

 قرص حديدي مصمت كتلته kg(10) ونصف قطره m(1) يدور 20 دورة في الثانية حول محور . 4
عمودي يمرّ في مركز كتلته .

. I = 12 MR2 (أ) احُسب الطاقة الحركية للقرص مستخدِمًا
(ب) ما مقدار الطاقة الحرارية الذي يطُلِقها القرص إذا قلتّ سرعته الزاوية إلى نصف ما كانت عليه؟

m يستطيع أن ينزلق من دون احتكاك على مستوى مائل بزاوية 30º مع . 5
1
 = (80)g جسم كتلته

المستوى الأفقي ، رُبِط بخيط عديم الكتلة لا يتمدّد ويمرّ فوق بكرة عديمة الكتلة ونصف قطرها 
m كما في الشكل (44) .

2
 = (60)g (20) ، ورُبط بطرفه الآخر جسم كتلتهcm

m
1

30º
m

2

(شكل 44)

كرة
ب (أ) أفُلِت النظام (كتلتان ، بكرة ، مستوى مائل ، الأرض) من سكون . 

m بعد إزاحته على 
1
اِستخدم قانون الطاقة الحركية لحساب سرعة الكتلة 

. (40)cm السطح المائل إلى الأعلى مسافة
m الإزاحة نفسها 

1
(ب) اِستنتِج السرعة الدورانية للبكرة بعد أن قطعت 

. (40)cm
لإطلاق جسم كتلته g(200) على المستوى المائل ، استخدمنا الجهاز في الشكل (45) . يبلغ طول . 6

 . L = (20)cm قبل إطلاق الجسم ، تمّ ضغطه حتىّ أصبح طوله . L
0
 = (25)cm الزنبرك الحقيقي

وصل الجسم ، بعد الإطلاق ، إلى النقطة A على المستوى المائل الأملس التي تقع على ارتفاع 

(شكل 45)

(20)cm

A  . v
A
 = (1)m/s من المستوى الأفقي بسرعة h = (20)cm

(أ) احُسب ثابت مرونة الزنبرك .
(ب) اِستنتج مقدار أقصى ارتفاع عن المستوى الأفقي الذي 

يمكن أن تبلغه الكتلة .

π°UGƒàdG

اكُتب مقالاً لا يزيد عن عشرة أسطر تبُيِّن فيه دور الطاقة الداخلية في تغيرّ حالة المادةّ .

»ãëH •É°ûf

الكتلة والطاقة مرتبطتان بمعادلة وضعها أينشتاين عام 1905 م ، وتتغيرّ الكتلة بتغيرّ السرعة إلى أن 
تكتسب طاقة . أجرِ بحثاً تبُيِّن فيه صعوبة تعجيل الجسم والوصول به إلى سرعة الضوء لأنّ كتلته 

تصبح لا نهائية .
أشِر في بحثك إلى المعادلة التي تظهر تغيرّ الكتلة بالنسبة إلى السرعة واستخدم المعادلة لتوضّح 

تغيرّ الكتلة مع ازدياد السرعة لتفسّر كيف تصبح الكتلة لا نهائية .
أشِر في بحثك ، أيضًا ، إلى دور تحوّل جزء من الكتلة إلى طاقة في توليد الطاقة النووية .
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الدرس الأوّل
عزم الدوران 

الدرس الثاني
القصور الذاتي الدوراني  

الدرس الثالث
 ديناميكا الدوران 

الدرس الرابع
كمّية الحركة الزاوية 

ما هي حركة الأجسام بعد اصطدام كرة البلياردو بها؟ هل هي خطيّة أو دورانية أم الاثنين معًا؟

لقد عرفنا أنّ الحركة بشكل عامّ تكون خطيّة أو دورانية أو الاثنين معًا ، 
ولقد درسنا سابقًا الحركة الدورانية الزاوية وهي حركة أجسام كثيرة 

حولنا ، وتعرّفنا المقادير الفيزيائية التي تسمح لنا بفهمها ومنها الإزاحة 
الزاوية ، والسرعة الزاوية ، والعجلة الزاوية وغيرها . ودرسنا أيضًا أنواع 

الحركة من حركة دورانية منتظمة السرعة الدورانية (الزاوية) مثل حركة 
الأقمار الصناعية إلى حركة دورانية منتظمة العجلة وتنتج عن تغيرّ اتجّاه 

سرعة الجسم أو التغيرّ المنتظم في سرعته الدورانية (الزاوية) . 
لقد اقتصرت دراستنا في السنوات السابقة على كينماتيكا (علم الحركة) 

الدوران ، فتناولنا المعادلات الرياضية التي تربط بين المقادير الفيزيائية 
المختلِفة التي نحتاج إليها لتحليل الحركة الدورانية ، ولكننّا لم نبحث في 

تأثير القوّة في الحركة الدورانية . 
فهل للقوّة تأثير في الحركة الدورانية؟ متى تجعل القوّة الجسم ينتقل 

ومتى تجعله يدور؟ هل يمكن استخدام القوانين التي درسناها في الحركة 
الخطيّة في دراسة الحركة الدورانية؟

يتمحور هذا الفصل حول ميكانيكا الدوران ، حيث سنجيب عن كلّ 
التساؤلات السابقة وسنكتشف تأثير القوّة في تدوير الأجسام ، وسنكتب 

القوانين الثلاثة لنيوتن للحركة الدورانية ، وسنتطرّق أيضًا إلى دراسة 
مفاهيم أخرى تتعلقّ بالطاقة الدورانية وكمّية الحركة التي سبق لنا أن 

درسناها في إطار دراستنا للحركة الخطيّة .

¿GQhódG Éμ«fÉμ«e

Rotational Mechanics
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Moment of a Force (Torque)
1-2 ¢SQódG
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يعرّف عزم القوّة . 
يميزّ بين عزم القوّة والقوّة . 
يذكر شرط اتزّان عزمين . 
يعرّف الازدواج . 

(شكل 46)

ا لتجعله في حالة حركة . ستتحرّك بعض الأجسام من دون  اِدفع جسمًا حرًّ
دوران ، فيما يدور بعضهما من دون حركة انتقالية (شكل 46) ويشهد 
بعضها حالة حركة خطيّة ودورانية معًا . فعلى سبيل المثال ، عند ركل 

كرة قدم ، غالباً ما تنقلب الكرة من جانب إلى آخر . ما الذي يحدّد ما إذا 
كان الجسم سيدور بتأثير قوّة أم لا؟ يوضّح هذا الدرس العوامل المؤثرّة 

في الدوران . وسوف نكتشف أنّ هذه العوامل تفسّر معظم التقنيات التي 
يستخدمها لاعبو رياضة الجمباز (رياضة تقوية العضلات والتزلجّ على 

الجليد والغطس وغيرها) .
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Definition of Torque  

أنت تبذل قوّة عندما تفتح الباب أو تفتح صنبور المياه أو تربط صامولة 
بواسطة مفتاح ربط . تنُتِج هذه القوّة عزم دوران ، وهو مختلف عن القوّة . 

إذا أردتَْ أن تحُرّك جسمًا ، فأنت تؤثرّ فيه بقوّة ، والقوّة هي المسبِّب 
لتسارع الأجسام . أماّ إذا أردتَْ أن تجعل الجسم يدور فأنت تستخدم 

عزم قوّة لأنهّ مسبِّب الدوران كما في (الشكل 47) .
وعليه ، نعّرف عزم القوّة Torque بأنهّ كميّة فيزيائية تعبرّ عن مقدرة القوّة على 

إحداث حركة دورانية للجسم حول محور الدوران .

2 .I qƒ≤dG ΩõY QGó≤e ÜÉ°ùM
Calculating the Magnitude of Torque

ينتج عزم القوّة عن استخدام القوّة وما يعُرَف بفعل الرافعة . مثال على 
استخدام فعل الرافعة هو استخدام مطرقة مخلبية لسحب مسمار من قطعة 

خشب . فكلمّا طال مقبض المطرقة زاد فعل الرافعة ، وكانت المهمّة 
أسهل ، حيث تزيد الذراع الطويلة من فعل الرافعة . ويمكن استخدام فعل 

الرافعة ، عند استخدام مفكّ أو سكّين لفتح غطاء علبة دهان .
يسُتخدَم عزم الدوران عند فتح الباب . يوضَع مقبض الباب بعيدًا عن 
لاته ، ليمدّنا بفائدة ميكانيكية  محور دوران الباب الموجود عند مفصَّ

أعلى مكتسَبة من فعل الرافعة ، وذلك عند سحب مقبض الباب أو دفعه . 
ولاتجّاه القوّة التي تبُذل أهمّية ، فإنكّ ، عند فتح الباب ، لا تدفع المقبض 
أو تسحبه جانباً لتجعل الباب يفتح ، بل تقوم بدفع عمودي على مستوى 
الباب . فقد علمّتك الخبرة أنّ الدفع أو السحب العمودي يعطيان دوراناً 

أكثر بجهد أقلّ .
تعرف إذا استخدمت مفتاح ربط ذي مقبض طويل ، 

وآخر ذي مقبض قصير (شكل 48) ، أنّ استخدام 
المقبض الطويل يؤديّ إلى بذل جهد أقلّ وفعل رافعة 

أكبر . عندما تكون القوّة عمودية ، تسُمىّ المسافة العمودية 
من محور الدوران إلى نقطة تأثير القوّة ذراع الرافعة . إذا لم 

تصنع القوّة زاوية عمودية مع ذراع الرافعة ، فإنّ مركّبة 
القوّة العمودية F هي التي تسهم في عمل عزم القوّة 

فحسب ، ويحُسَب عزم القوّة باستخدام المعادلة التالية:
عزم القوّة = مركّبة القوّة العمودية على الرافعة ^ ذراع القوّة .

τ = F
⊥
 ^ d

(شكل 47)
عزم الدوران هو الذي ينتج الدوران .

(شكل 48)
الأثر الدوراني للجسم ينتج عن تأثير المركبة 

العمودية .

F

F

F

θ
F

⊥

القوّة

القوّة

القوّة

عزم الدوران

عزم دوران أكبر

2d

d

d

عزم دوران أكبر بكثير
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أماّ إذا كانت القوّة تصنع زاوية θ مع المحور الأفقي (شكل 49) فنجد أنّ 
الأثر الدوراني للجسم ينتج عن تأثير المركّبة العمودية على المحور الذي 
يصل بين نقطة تأثير القوّة ونقطة الدوران ، وتكُتبَ معادلة عزم الدوران على 

. d F و النحو التالي: τ = F ^ d ^ sin θ  حيث إنّ θ هي الزاوية بين 

d

مفصلة

مقبض

باب

ذراع الرافعة

θ

F قوّة الشد 

(شكل 49)
منـظور رأسي للباب

لة . عند تطبيق قوّة ، تعُدَّ ذراع الرافعة المسافة بين مقبض الباب وحافةّ الرافعة المرتبطة بالمفصَّ

تقُاس F ، بحسب النظام الدولي للوَحدات ، بوَحدة (N) والمسافة بوَحدة 
. (N .m) وبالتالي يقُاس عزم القوّة بوَحدة (m)

يمكن أن ينُتجَ نفس عزم القوّة بتأثير قوّة كبيرة مع ذراع رفع قصيرة ، أو 
تأثير قوّة صغيرة مع ذراع رفع طويلة ، وينتج عزم دوران كبير عندما تكون 

القوّة وذراع الرافعة كبيرتين .

3 .Direction of Torque  I qƒ≤dG ΩõY √É qŒG
العلاقة الرياضية التي تمثلّ عزم القوّة τ = F ^ d ^ sinθ ، ويمكن 

صياغتها باستخدام الضرب الاتجاهي لتصبح على الشكل التالي :

τ  = F  ^ d

يبينّ ذلك أنّ عزم القوّة هو كمّية متجَّهة ويمكن تحديد اتجّاهها باستخدام 
قاعدة اليد اليمنى ، بحيث يشير الإبهام إلى اتجّاه عزم القوّة بعد تدوير 

الأصابع باتجّاه دوران الجسم .
إذا كان عزم القوّة على مفتاح الربط في الشكل (50) يؤدي إلى دورانه 
عكس اتجّاه عقارب الساعة . فإن اتجّاه عزم القوّة على مفتاح الربط ، 

بتطبيق قاعدة اليد اليمنى ، يكون عمودي على الصفحة نحو الخارج ، وقد 
اصطلُِح في هذه الحالة أن يكون اتجّاه عزم القوّة موجباً .

أماّ إذا كان عزم القوّة يؤديّ إلى دوران الجسم مع اتجّاه عقارب الساعة ، 
ًّا على الصفحة نحو الداخل ، وقد اصطلِح  فيكون اتجّاه عزم القوّة عمودي

في هذه الحالة أن يكون اتجّاه عزم القوّة سالباً .
وعليه نلخّص: إنّ اتجّاه عزم القوّة يكون موجبًا عندما يؤديّ إلى الدوران عكس 

اتجّاه حركة عقارب الساعة ، وسالبًا إذا أدىّ إلى الدوران مع اتجّاه عقارب الساعة .

F

θ

F
1

القوّة

عزم الدوران

(شكل 50)

á«FGôKEG Iô≤a

¿É°ùfE’G º°ùLh AÉjõ«ØdG

إنّ تركيب جسم الإنسان يسمح 
بتطبيق مبدأ العزوم في أقسام عديدة 

منه. فنلاحظ، على سبيل المثال، 
تطبيق مبدأ العزوم بالحركة الدائرية 
للعظام حول المفاصل التي تربطها 

بعضها ببعض. ففي حركة عظام 
الإنسان تطبيق لمبدأ الرافعة بأنواعها 

الثلاث. تعتمد حركة العظام على 
ثلاثة عناصر: العضلة التي تقوم 

بالجهد والمفاصل التي تؤديّ دور 
محور الدوران والقوّة المقاومة 

لدوران العظمة. ففي رأس الإنسان 
تشد عضلات الرقبة الجمجمة 

لمنع الرأس من الميل مكوّنة نظام 
رافعة من النوع الأوّل حيث يكون 
مركز الارتكاز بين الجهد المطبَّق 
والمقاومة ، بينما نجد في الساق 

والذراع أنواع أخرى من الرافعات 
حيث يطبقّ مبدأ العزوم.
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(1) ∫Éãe

يوضّح الشكل (51) ساق متجانسة طولها cm(100) وزنها N(60) تؤثرّ فيها ثلاث قوى .
د اتجّاهها . (أ) احُسب مقدار عزم القوّة لكلّ من القوى الأربع حول محور الدوران (O) ، وحدِّ

(ب) احُسب محصّلة العزوم على الساق الناتج عن تأثير القوى الأربع .
(جـ) اِستنتج اتجّاه دوران الساق .

طريقة التفكير في الحلّ
1 .

30º 30ºO

F
4
 = (200)N

F
1
 = (30)N

F
2
 = (20)N

F
3
 = (60)N

(10)cm(90)cm

(شكل 51)

حلِّل: اذُكر المعلوم وغير المعلوم . 
المعلوم:

مقادير القوى واتجّاهها .
ذراع القوّة لكلّ من القوى الأربع .

غير المعلوم: 
(أ) عزم القوّة مقدارًا واتجّاهًا لكلّ من القوى الأربع .

(ب) محصّلة العزوم حول المحور .
(جـ) اتجّاه محصّلة العزوم .

احُسب غير المعلوم .. 2

(أ) باستخدام المعادلة الرياضية τ = F ^ d ^ sin θ ، وبالتعويض عن المقادير المعلومة ، نجد:
عزم القوّة F1 حول O يساوي:

  τ
1
= F

1
 ^ d

1
 ^ sin 0 = (0)N .m

عزم القوّة F2 حول O يساوي:
 τ

2
= F

2
 ^ d

2
 ^ sin 30 = 20 ^ 0 .9 ^ sin 30 = (+9)N .m

واتجّاهها موجب لأنّ القوّة تعمل على تدوير الجسم عكس عقارب الساعة .
عزم القوّة  F3 حول O يساوي:

τ
3 
= - F

3
 ^ d

3
 ^ sin 90 = 60 ^ 0 .5 ^ 1 = (-30)N .m

واتجّاهها سالب لأنّ القوّة تعمل على تدوير الجسم مع اتجّاه عقارب الساعة .
F4 حول O يساوي: عزم القوّة 

 τ
4
 = F

4
 ^ d

4
 ^ sin θ = (0)N .m

d بين نقطة تأثير القوّة والمحور تساوي صفرًا .
4
لأنّ المسافة 

(ب) تساوي محصّلة العزوم:
 ∑ τ  = τ 1

+ τ
2
+ τ

3
 + τ

4
= 0 + 9 - 30 + 0 = (-21)N .m

اتجّاه محصّلة العزوم سالب كما تظهر النتيجة . لذا سيدور الساق حول محور الدوران باتجّاه عقارب 
الساعة .

قيِّم: هل النتيجة مقبولة؟. 3
F يؤثرّ في تدويره أكثر 

3
يظهر واضحًا من المقادير المعطاة في المسألة أنّ ثقل الساق المتمثِّل بالقوّة 

F ، وأنّ اتجّاه تدويره سالب وهذا ما توصّلنا إليه ، ما يؤكّد صحّة النتيجة .
2
من القوّة 
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الفرق بين الشغل وعزم القوّة
هناك تشابه بين المقادير المستخدَمة 

في معادلة الشغل من قوّة وإزاحة ، 
وبين المقادير المستخدَمة في معادلة 

عزم القوّة ، ولكن هناك فرق كبير 
بين الكمّيتين ، فالشغل هو حاصل 

(Dot Product) الضرب القياسي
= W وتمثلّ d الإزاحة .  F  . d

بينما عزم القوّة هو حاصل الضرب 
(Cross Product) الاتجّاهي

τ وتمثلّ d ذراع   = F  ^ d
القوّة . بالإضافة إلى أنّ عزم القوّة 

كمّية متجّهَة بينما الشغل كمّية 
قياسية .

يقُاس الشغل بواحدة (J) بينما يقُاس 
(N.m) عزم القوة بوحدة

(شكل 53)

4 . Balanced Torques   áfõqàŸG Ωhõ©dG
يعرف الأطفال العزوم وهم يلعبون الأرجوحة بصورة بديهية ، حيث يمكن 

أن يتوازنوا على الأرجوحة حتىّ ولو كانت أوزانهم غير متكافئة ، وذلك 
لأنّ الوزن لا يسببّ الدوران بل يسببّه العزم .

ويتعلمّ الأطفال أنّ المسافة من النقطة التي يجلسون عندها إلى نقطة 
محور الارتكاز لها أهمّية أوزانهم نفسها (شكل 52) ، حيث تجلس 

الفتاة الأثقل وزناً على مسافة قصيرة من نقطة الارتكاز (محور الدوران) 
في حين تجلس الفتاة الأخفّ وزناً على مسافة أبعد من نقطة الارتكاز ، 
ويتحقّق الاتزّان إذا كان عزم القوّة الذي يسببّ دوراناً مع اتجّاه عقارب 

الساعة بواسطة الفتاة الأقل وزناً يتساوى مع عزم القوّة الذي يسببّ دوراناً 
عكس اتجّاه عقارب الساعة بواسطة الفتاة الأكبر وزناً .

(3)m

(1 .5)m

(200)N

(400)N

(شكل 52)

يعتمد اتزّان الميزان ، الذي يعمل بالأوزان المنزلقة ، على اتزّان العزوم 
وليس على اتزّان الأوزان ، فالأوزان المنزلقة يتمّ ضبطها حتىّ يتزّن عزم 
القوّة في عكس اتجّاه عقارب الساعة مع عزم القوّة في اتجّاه عقارب 

الساعة وتبقى ذراع الميزان أفقية (شكل 53) .
من هنا نستنتج أنّ الشرط الضروري لتحقيق الاتزّان الدوراني هو أن محصّلة جمع 

العزوم تساوي صفرًا:

∑τ  = 0

أي أنّ المجموع الجبري للعزوم مع اتجّاه عقارب الساعة = المجموع 
الجبري للعزوم عكس اتجّاه عقارب الساعة ويمكن صياغة ذلك رياضياً 

كما يلي:
∑τ

C .W
 = ∑τ

A .C .W

ونستنتج بعد أن تعلمّنا شرط الاتزّان الدوراني أنهّ لاتزّان جسم ماديّ تؤثرّ 
فيه مجموعة من القوى لا بدّ من توافر شرطي الاتزّان التاليين: 

∑F = 0
∑ τ  = 0
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(شكل 55)
سوف ينقلب الشكل القائم L لوجود عزم 

دوران ، وبالمثل عندما تحُاوِل أن تلمس أصابع 
قدميك وأنت واقف وظهرك وكعبا قدميك 

ملاصقان للحائط ، سوف ينتج عزم دوران إذ 
يقع مركز ثقلك أمام قدميك .

(شكل 56)
عند ركل كرة القدم من نقطة على خطّ مستقيم 
مع مركز ثقلها تنطلق دون دوران ، وعند ركلها 

أسفل مركز ثقلها أوفوقه ستنطلق مع حركة 
دورانية .

O

F
1

F
2

d
2

d
1

(شكل 57)

5 .π≤ãdG õcôeh Iqƒ≤dG ΩõY
Torque and the Center of Gravity 

تعلمّنا سابقًا أنّ لكلّ جسم مركز ثقل ، هو نقطة تأثير قوّة الجاذبية . 
فمركز الثقل هو الموضع الذي يكون عنده محصّلة عزوم قوّة الجاذبية 

المؤثرّة في الجسم الصلب تساوي صفرًا ، ودرسنا أنّ وجود موقع مركز 
الثقل خارج المساحة الحاملة للجسم سيجعله ينقلب . فعندما يصبح مركز 
ثقلك خارج المساحة الحاملة لجسمك يصبح هنالك عزم للقوّة ، وعندئذٍ 

ستعلم أنّ سبب انقلابك هو عزم القوّة (شكل 55) .
والإجابة على سؤالنا في مقدّمة الدرس عمّا إذا كانت كرة القدم بعد 

ركلها ستتحرّك أو ستدور حول نفسها أم الاثنين معًا يتعلقّ بفهم العلاقة 
بين مركز الثقل والقوّة وعزم القوّة . فنحن نعلم ضرورة وجود قوّة 

لإطلاق قذيفة أو لإطلاق الكرة ، وإذا كان خط عمل القوّة يمرّ بمركز 
ك الكرة من دون  ثقل الكرة فإنّ كلّ ما تستطيع فعله هذه القوّة هو أن تحُرِّ
وجود أيّ عزم قوّة يجعل الكرة تدور حول مركز ثقلها . أماّ إذا كان خط 
عمل القوّة المؤثرّة لا يمرّ بمركز الثقل ، فالكرة بالإضافة إلى حركة مركز 

ثقلها ، ستدور حول هذا المركز (شكل 56) ، بفعل عزم القوّة . وعليه ، 
نستنتج أنّ سبب دوران الجسم حول محوره هو محصّلة عزوم القوى ، 

أي أنهّ عندما لا يدور الجسم تكون محصّلة العزوم تساوي صفرًا ، وهذا 
يفسّر سبب الاتزّان الدوراني للجسم المعلَّق حول مركز ثقله . فمركز ثقل 

الجسم الصلب هو موقع محور الدوران الذي تكون محصّلة عزوم قوى الجاذبية 
المؤثرّة في الجسم الصلب حوله تساوي صفرًا .

6 .Torque of a Couple  êGhOR’G ΩõY
عندما تقوم بفتح صنبور أو إغلاقه ، يؤُثرّ كلّ من إصبع الإبهام وإصبع السبابة 

في مقبض الصنبور بقوّتين متساويتين مقدارًا ومتعاكستين اتجّاهًا ، يشكّلان ما 
يعُرَف بعزم الازدواج الذي يرُمزَ له بالرمز C ، ويسببّان دوران مقبض الصنبور .
تكثر في حياتنا اليومية الأمثلة على عزم الازدواج . فعندما تقود درّاجتك 

الهوائية على المنعطف ، تبذل بيديك قوّتين متوازيتين متساويتين في 
المقدار ومتعاكستين في الاتجّاه على المقود . فتصنع هاتان القوّتان عزم 

ازدواج يؤديّ إلى التفاف المقود ، كذلك عندما يستخدم ميكانيكي 
السياّرة المفتاح الرباعي لفكّ صواميل إطار السيارة ، فهو يدُير الصواميل 
 F2 F و 

1 بتأثير عزم ازدواج الذي يساوي مقداره محصّلة عزم القوّتين 
المتساويتين في المقدار والمتعاكستين في الاتجّاه واللتان تؤديّان إلى 

دوران الجسم في الاتجّاه نفسه ، أي الشكل (57):

C  = τ1  + τ2  
C  = F

1  ^ d
1  + F2  ^ d

2
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الازدواج يتكوّن من قوّتين متساويتين في المقدار ومتوازيتين وتعملان في اتجّاهين 
F فتصبح

1
 = F

2
 = F متضادين وليس لهما خطّ عمل واحد . ولكن

d وهي المسافة العمودية بين 
1 
+ d

2
 = d :ّوحيث إن . C = F (d

1
 + d

2
)

القوّتين ، يحُسَب مقدار عزم الازدواج: 

C  = F  ^ d
يساوي عزم الازدواج حاصل ضرب مقدار إحدى القوّتين بالمسافة العمودية بينهما .

(3) ∫Éãe

مفكّ قطر مقبضه cm(3) وعرض رأسه الذي يدخل في شقّ البرغي mm(7) . استخُدم لتثبيت البرغي 
 F

1
 = F

2
 = (49)N في لوح خشبي وذلك بالتأثير في مقبضه بواسطة اليد بقوّتين متساويتين في المقدار

ومتعاكستين في الاتجّاه كما في الشكل (58) .

A B3 cm

(7)mm

F

F

(شكل 58)

(أ) احُسب مقدار عزم الازدواج المؤثرّ في مقبض المفكّ . 
(ب) احُسب مقدار القوّة التي تؤديّ إلى دوران البرغي المراد تثبيته .

طريقة التفكير في الحلّ
حلِّل: اذُكر المعلوم وغير المعلوم .. 1

 (3)cm المعلوم: قطر المقبض
  F

1
 = F

2
 = F = (49)N مقدار القوّة  

 d = (7)mm ّقطر رأس المفك  
 C = ? ّغير المعلوم: (أ) عزم الازدواج المؤثرّ في مقبض المفك
(ب) مقدار القوّة 'F التي تسببّ دوران البرغي  

احُسب غير المعلوم .. 2

(أ) باستخدام معادلة عزم الازدواج وبالتعويض عن المقادير المعلومة ،
نحصل على:

C = F ^ d = 49 ^ 0 .03 = (1 .47)N .m
(ب) عزم الازدواج الذي يؤثرّ في البرغي هو نفسه الذي يؤثرّ في المقبض ، وبالتالي يساوي عزم 

C = (1 .47)N .m الازدواج على البرغي
بالمقابل ، يساوي عزم الازدواج على البرغي حاصل ضرب مقدار إحدى القوى المؤثرّة والمسافة 

. d = (7)mm ّالعمودية بين القوّتين والتي تتمثلّ بعرض المفك
وباستخدام معادلة الازدواج C = F’ .d ، نجد  F’ = Cd ، وبالتعويض عن المقادير المعلومة ، نحصل على:

 F’ = 1 .47
7 ^ 10-3 = (210)N

قيِّم: هل النتيجة مقبولة؟. 3
نستخدم في حياتنا اليومية المفكّ في تثبيت البراغي ونزعها وليس أيدينا . ويظهر سبب ذلك واضحًا 

في إجابات هذه المسألة ، فالقوّة المؤثرّة في البرغي أكبر من القوّة المبذولة على المقبض ، وهذا 
يفسّر أهمّية استخدام المفكّ لتثبيت البراغي أو نزعها بدلاً من استخدام قوّة اليد مباشرة ، ويؤكّد صحّة 

الإجابات التي توصّلنا إليها .
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1-2 ¢SQódG á©LGôe

أولاً - ما اتجّاه القوّة  بالنسبة لذراع القوّة التي يجب أن تسُتخدَم لإنتاج أكبر عزم للقوّة؟

ثانيًا - احُسب مقدار عزم القوّة التي تبذلها يدك عندما تربط صامولة بمفكّ ربط ، علمًا أنّ طول ذراع القوّة 

يساوي mm(200) ومقدار القوّة يساوي N(100) والزاوية بين القوّة وذراعها تساوي 45º كما هو موضّح 
في الشكل (59) . 

(شكل 59)

(200)mm
F

45º

ثالثًا - الشكل (60) يمثلّ مسطرة متجانسة ، فما هي كتلة الصخرة (m) علمًا أنّ النظام في حالة اتزّان؟

60º

F

(25)cm

(شكل 61)

F
x

F
y

 

(شكل 60)

(0)cm (25)cm (50)cm

m = ?

(75)cm (100)cm

ك السياّرة إلى عزم مقداره N .m(40) لتشدّ  رابعًا - تحتاج صامولة في محرِّ

جيدًّا . تستخدم مفكّ ربط طوله cm(25) وتشدّه بقوّة
كما هو موضّح في الشكل (61) . احُسب مقدار القوّة التي يجب أن

تبذلها كي تثبت الصامولة .
خامسًا - (أ) احُسب مقدار عزم القوّة لكلّ من وزني الفتاة والولد الجالسين 

على اللوح المتأرجح الموضّح في الشكل (62) بإهمال وزن اللوح .
(ب) احُسب المسافة التي يجب أن تفصل بين الفتاة الجالسة يميناً ومحور ارتكاز اللوح المتأرجح عندما 

يساوي وزن الفتاة N(400) والنظام في حالة اتزّان .

(3)m(1.5)m

(300)N

(600)N

(شكل 62)

57



(I) ÊGQhódG »JGòdG Qƒ°ü≤dG

Rotational Inertia
2-2 ¢SQódG

áeÉ©dG ±GógC’G

 . (I) يعرّف القصور الذاتي الدوراني
 . (I) يعدّد العوامل التي يتوقفّ عليها مقدار القصور الذاتي الدوراني
يعرّف معادلات أو قوانين القصور الذاتي الدوراني (I) لبعض الأجسام . 
 . (I) يطبقّ قانون المحاور المتوازية لإيجاد القصور الذاتي الدوراني

 (شكل 63) 
يعتمد القصور الذاتي الدوراني على بعد الكتلة عن المحور .

عند دراستنا للحركة الخطيّة ، درسنا مفهوم القصور الذاتي ، حيث إنّ 
كتلة الجسم تعمل على مقاوَمة التغيرّ في حركة الجسم ، فالجسم الساكن 

ك في خط مستقيم يميل إلى  يميل إلى أن يبقى ساكناً ، والجسم المتحرِّ
كًا في خط مستقيم . ويلزمنا لتغيير حركة الجسم (بحسب  أن يبقى متحرِّ

القانون الثاني لنيوتن) قوّة يختلف مقدارها باختلاف كتلة الجسم ، فكلمّا 
كانت الكتلة أكبر احتجنا إلى قوّة أكبر ، لذا عرّفنا الكتلة على أنهّا مقياس 

للقصور الذاتي في الحركة الخطيّة .
ولكنّ السؤال المطروح في هذا الدرس هو: هل يقاوم الجسم تغيُّر حركته 

الدورانية حول محوره؟ وهل هناك قصور ذاتي دوراني يقيس مقاوَمة 
الجسم لتغيُّر حركته الدورانية كما في حالة الحركة الخطيّة؟

الإجابة عن تلك الأسئلة هي محور هذا الدرس .
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من السهل أن يدور 

من الصعب أن يدور 

(شكل 64) 
يعتمد القصور الذاتي الدوراني على بعد الكتلة 

محور الدوران .

(شكل 65) 

(شكل 66) 
البندول القصير يتحرّك إلى الأمام والخلف أكثر 

من تحرّك البندول الطويل .

(شكل 67) 
إنّ الكلب ذو القوائم الصغيرة له قصور ذاتي 

دوراني أقلّ من القصور الذاتي الدوراني 
للغزال ، ما يجعله يتحرّك بسرعة أكبر .

1 .Rotational Inertia  (I) ÊGQhódG »JGòdG Qƒ°ü≤dG
يعني القصور الذاتي أنّ الجسم الساكن يميل إلى أن يبقى ساكناً ، والجسم 

كًا في خطّ مستقيم ، ويوجَد قانون  ك يميل إلى أن يبقى متحرِّ المتحرِّ
للدوران شبيه بذلك: «عندما يدور جسم حول محور ، فإنهّ يميل إلى أن 

يبقى دائرًا حول هذا المحور» . تسُمىّ مقاوَمة الجسم لتغيُّر حركته الدورانية 
القصور الذاتي الدوراني Rotational Inertia (I)، حيث تميل الأجسام التي 
تدور إلى الاستمرار في الدوران ، في حين تميل الأجسام الساكنة إلى البقاء ساكنة .

وكما يحتاج الجسم إلى قوّة ليغيرّ حالته الخطيّة ، فإنّ عزم القوّة مطلوب لتغيير 
الحالة الدورانية لحركة الجسم . أماّ في غياب محصّلة القوّة ، فإنّ الأجسام 

التي تدور تحتفظ بدورانها .

2 .ÊGQhódG »JGòdG Qƒ°ü≤dG ‘ IôqKDƒŸG πeGƒ©dG
 Factors That Affect Rotational Inertia

يشبه القصور الذاتي الدوراني القصور الذاتي بالاتجّاه الخطيّ والذي يعتمد 
على الكتلة ، ولكنّ القصور الذاتي الدوراني يعتمد على توزيع الكتل ، فكلمّا 

زادت المسافة بين كتلة الجسم والمحور الذي يحدث عنده الدوران زاد 
القصور الذاتي الدوراني (I) كما في الشكل (64) .

عند الإمساك بمضرب كرة البيسبول ذي الذراع الطويلة قرب طرفه يكون له 
ًّا أكبر من قصور المضرب ذي الذراع القصيرة ، وعندما  ًّا دوراني قصورًا ذاتي

كًا ، ويكون من  يتحرّك المضرب الطويل يكون له ميل كبير للبقاء متحرِّ
ًّا  عه أكثر (شكل 65) . يملك المضرب القصير قصورًا ذاتي الصعب أن تسُرِّ

ًّا أقلّ من المضرب الطويل ولكنّ استعماله أسهل في الحركة الدورانية ،  دوراني
وأحياناً ما يوقِف لاعب كرة البيسبول المضرب عن طريق الإمساك به من 

نهايته بإحكام ، ويقُلِّل إيقاف المضرب قصوره الذاتي الدوراني ، أما المضرب 
الذي يحُمَل من نهايته أو المضرب الطويل فلا يميل إلى التأرجح بسرعة 

وكذلك حركة البندول البسيط (شكل 66) .
وكذلك الحال بالنسبة إلى الناس والحيوانات ذات القوائم الطويلة مثل 

الزرافات والخيول والنعام ، فهي تتحرّك بسرعة أقلّ من الحيوانات ذات 
القوائم القصيرة مثل الخيول الصغيرة أو الفئران أو الكلب الألماني الصغير 

كما في الشكل (67) . تجدر الإشارة إلى أنّ القصور الذاتي الدوراني للجسم 
ليس بالضرورة كمّية محدّدة ، فيكون أكبر عندما تتوزّع الكتلة نفسها داخل 

الجسم بتباعد عن محور الدوران ، ويمكنك تجربة ذلك بمدّ ساقيك إلى 
الخارج ، أو بهزّ ساقك الممدودة إلى الخلف وإلى الأمام من مفصل الفخذ . 

ر التجربة نفسها مع ثني الساق . كرِّ
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ستجد أنّ تحريك الساق إلى الأمام وإلى الخلف أسهل في حالة ثنيها ، إذ 
يقلّ ، عندئذٍ ، عزم القصور الذاتي الدوراني . لهذا يعُتبرَ ثني الساقين عند 

الجري مهمًّا حيث إنهّ يسهّل تأرجحهما إلى الأمام وإلى الخلف كما في 
الشكل (68) .

(شكل 68) 
لاحِظ ثني الساقين عند الجري ، وذلك لتقليل عزم القصور الذاتي الدوراني .

á«FGôKEG Iô≤a

تطبيق عزم الدوران على مكوّك الخيط
ضَع مكّوكًا فيه خيط أو سلك على الطاولة ، واستخدم مكّوكًا له إطار بحافاّت واضحة وأوسع من محوره . يمكنك بذل 

عزم قوّة على المكّوك ، وذلك بسحب الخيط أو السلك ، ويتضّح ذلك من الدوران الناتج . اِسحب الخيط برفق لكي 
تجعل المكّوك يدور من دون أن ينزلق ، ولتتناسب الزيادة في السرعة الدورانية مع عزم القوّة .

تذكَّر أنّ: عزم القوّة = مركبة القوّة العمودية ^ ذراع القوّة
ًّا ، فإنّ مسافة الخيط على الطاولة تمثلّ ذراع الرافعة مع ملاحظة أنّ مسافة ذراع الرافعة تكون  وعند سحب الخيط أفقي

َّع تأثير السحب في كلا  أطول عندما يكون الخيط فوق قمّة المحور ، وتكون أقلّ عندما يكون الخيط أسفل المحور . توق
الاتجّاهين ، في حالة وجود الخيط عند قمّة المحور وعند أسفل المحور . هل وجدْتَ توافقًا؟ وما تفسيرك الفيزيائي؟ 

هل توجد زاوية يمكن أن يسُحَب عندها الخيط ولا تنُتِج عزمًا؟

(أ)

(ب)

(جـ)

(أ) يكون عزم القوّة أكبر عندما تكون ذراع الرافعة أكبر
(ب) يكون عزم القوّة أصغر عندما تكون ذراع الرافعة صغيرة وأقرب إلى سطح الطاولة
(جـ) إنّ تغيرّ الزاوية بين القوّة وذراع الرافعة يؤثرّ في مقدار عزم القوّة المؤثرّة على الخيط

60



á«FGôKEG Iô≤a

ÈàîŸG ‘ AÉjõ«ØdG

أرجِح قلمك
أرجِح قلمك الرصاص بين أصابعك 

إلى الأمام وإلى الخلف ، ثمّ قارِن 
سهولة الدوران عند أرجحته من 
نقطة في منتصفه ، وعند أرجحته 

من أحد طرفيه . ولمقارنة ثالثة ، أدِر 
القلم بين إصبعي الإبهام والسبابة 
حول المحور الطولي للقلم . بناء 

على مشاهد تلك الحالات الثلاث 
الممثَّلة في الشكل (70) ،

في أيّ الحالات الدوران أسهل؟ 
وهل يتناسب عزم القصور الدوراني 
الصغير في هذه الحالة مع r (نصف 

القطر الصغير)؟

 
(شكل 70) 

ك  مثال أخير يظُهِر أهمّية القصور الذاتي الدوراني هو أداء البهلوان المتحرِّ
على سلك رفيع . فهو يمّد يديه ليحافظ على اتزّانه أو يمُسِك بيده عصًا 

طويلة ، أي يزيد في الحالتين قصوره الذاتي الدوراني ما يساعده على 
مقاومةَ الدوران فيحظى بوقتٍ أطول لضبط مركز ثقله والحفاظ على اتزّانه . 

مما سبق يمكن استنتاج أنّ القصور الذاتي الدوراني يتوقف على:
(أ) موضع محور الدوران بالنسبة لمركز الكتلة .

(ب) شكل الجسم وتوزّع الكتلة .
(جـ) مقدار كتلة الجسم .

(شكل 69) 
ك على السلك عندما يمُسِك بيده عصًا طويلة ، وبذلك  يزداد القصور الذاتي الدوراني للبهلوان المتحرِّ

يستطيع أن يقاوم الدوران ، ويحظى بوقت أطول لضبط مركز ثقله .

3 .ÊGQhódG »JGòdG Qƒ°ü≤dG ÚfGƒb
Formulas For Rotational Inertia

عندما تناولنا موضوع الطاقة الحركية الدورانية في الدروس السابقة ، 
أوردنا بعضًا من معادلات القصور الذاتي الدوراني لنستخدمها في حلّ 

ص لهذا  بعض مسائل الاتزّان . أماّ في هذا الجزء من الدرس المخصَّ
الموضوع ، فسنتذكّر تلك التي تعلمّناها سابقًا وسنضيف معادلات جديدة .

عندما تكون كتلة الجسم m كلهّا مركّزة على المسافة r من محور 
الدوران (مثل كرة صغيرة معلَّقة بخيط بندول تتأرجح حول موضع 
سكونها أو عجلة رفيعة تلُفَّ حول مركزها) ، يكون القصور الذاتي 
للدوران mr2 . وعندما تكون الكتلة أكثر توزيعًا كما هو الحال في 

ساقك ، يكون القصور الذاتي أقلّ وتختلف صيغته الرياضية . يتضمّن 
الشكل (71) مقارنات القصور الذاتي الدوراني طبقًا لتغيُّر الأشكال 

والمحاور . (ليس من المهمّ أن تعرف كلّ هذه القيم ، ولكن يمكنك رؤية 
كيف تتغيرّ الصيغة الرياضية مع تغيُّر الشكل والمحور) . يقُاس القصور 

. kg .m2 الذاتي الدوراني بحسب النظام الدولي للوَحدات بوَحدة
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m

I = mr2 I = mr2I = 1
12

 mL2

I = 1
12

 mL2 I = 1
3

 mL2

I = 1
3

 mL2

I = 1
2

 mr2 I = 2
5

 mr2 I = 2
3

 mr2I = 1
2

 m(r
1

2 + r
2

2) 

I = 1
12

 m(a2 + b2) 

(1)

(5)

(9)

(2)

(6)

(10)

(3)

(7)

(11)

(4)

(8)

r

r

r
r r

r
1

r
2

L L

LL
a

b

قشرة أو حلقة
أسطوانية رقيقة

كتلة نقطيةعصًا رفيعةعصًا رفيعة

أسطوانة حلقيةأسطوانية حلقية
أو قرص صلب

قشرة كروية 
رقيقة

كرة صلبة

لوحة مستطيلةصفيحة مستطيلة رقيقةصفيحة مستطيلة رقيقة

(شكل 71) 
القصور الذاتي الدوراني لأجسام مختلفة ، كتلة كلّ منها M تدور حول محاور مختلفة .

4 .Parallel Axis Theorem  …RGƒŸG QƒëŸG ájô¶f
كما ذكرنا سابقًا ولاحظنا في الشكل (71) ، يختلف القصور الذاتي 
الدوراني للجسم الذي يدور حول محور محدّد مع اختلاف محور 

الدوران . فعلى سبيل المثال ، مقدار القصور الذاتي لعصًا حول محور يمرّ 
في منتصفها يختلف عن مقدار القصور الذاتي لعصًا حول محور موازٍ يمرّ 
في أحد طرفيها كما تدلّ القوانين المعطاة سابقًا . ولكن إن أردنا أن تدور 
العصا السابقة حول محور موازٍ للمحور المارّ بمنتصفها ، أي محور يمرّ 

بنقطة تبعد مسافة d عن نقطة الوسط ، فأيّ قانون قد نستخدم؟ 
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d

(شكل 72) 
القصور الذاتي الدوراني بالنسبة إلى محور مواز 

للمحور المار بمركز الكتلة يساوي
  I = I

0
 + md2 

حيث m هي كتلة الجسم و d تساوي المسافة 
بين المحورين .

هل هناك نظرية تسمح لنا بحساب مقدار القصور الذاتي الدوراني حول 
أيّ محور موازٍ للمحور المارّ بمركز ثقل الجسم؟ هل نحن بحاجة إلى 
آلاف المعادلات لحساب القصور الذاتي الدوراني لنستخدمها عند أيّ 

تغيُّر في موقع محور الدوران؟
تسمح لنا النظرية التي وضعها هوغنس Huyghens حول المحاور 

المتوازية بحساب مقدار القصور الذاتي الدوراني لجسم يدور حول أيّ 
محور موازٍ للمحور المارّ بمركز ثقله ويبعد عنه مسافة d ، وذلك بالنسبة 

I للجسم حين يدور حول محور مارّ بمركز 
0
إلى القصور الذاتي الدوراني 

ثقله والمفترَض أنهّ معلوم دائمًا .
وتكُتبَ المعادلة الرياضية على الشكل التالي:

I = I
0
 + md2

حيث m هي كتلة الجسم وتقُاس بوَحدة kg وd هي المسافة الفاصلة 
 I والمحور الجديد الموازي له I

0
بين موضع المحور المارّ بمركز الثقل 

. kg .m2 لتكون وَحدة القصور الذاتي الدوراني m وتقُاس بوَحدة
ملاحظة: إنّ مقدار القصور الذاتي الدوراني لجسم يدور حول محور يمرّ 

بمركز الثقل يكون دائمًا معُطى في المسألة ، ولا حاجة لمعرفة كيفية 
حسابه .

(1) ∫Éãe

احُسب القصور الذاتي الدوراني للنظام المؤلفّ من كرتين من الحديد متماثلتين كتلة الواحدة منهما 
 L وطولها m = (2)kg مثبَّتتين على طرفي عصا كتلتها r = (5)cm ونصف قطرها m = (5)kg

المسافة بين مركزي كتلة الكرتين تساوي m(2) ، يدور النظام حول محور عمودي يمرّ بنقطة الوسط 
للعصا كما هو موضّح في الشكل (73) . علمًا أن مقدار القصور الذاتي الدوراني لكلّ من الأجسام 

الثلاثة حول محور يمرّ بمركز ثقل كلّ منهما يساوي:
 I

0 sphere
 = 25 mr2 للكرة بالنسبة إلى محور يمرّ بمركز ثقلها  I

0 sphere

I
0 rod

 = 1
12 mL2 :للعصا بالنسبة إلى محور يمرّ بمركز ثقلها  I

0 rod
 

(شكل 73)

O

L

d = (2)m

طريقة التفكير في الحلّ 
حلِّل: اذُكر المعلوم وغير المعلوم .. 1

r = (5)cm المعلوم: نصف قطر الكرة
m = (5)kg كتلة الكرة  

d = (2)m المسافة بين مركزي الكرتين  
m = (2)kg وكتلة العصا  
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(™HÉJ) (1) ∫Éãe

غير المعلوم:
القصور الذاتي الدوراني للنظام حول المحور المارّ بنقطة وسط العصا . 

احُسب غير المعلوم .. 2

القصور الذاتي الدوراني للنظام حول محور الدوران O يساوي مجموع القصور الذاتي الدوراني 
لجميع مكوّناته حول المحور نفسه .

 I
system 

= I
sphere

 + I
sphere

 + I
rod

أي أنّ: 
وبما أنّ الكتلتين متماثلتان:

I
system

 = 2I
sphere

 + I
rod

باستخدام معادلة المحور الموازي ، نجد القصور الذاتي الدوراني لكلّ من مكوّنات النظام حول 
المحور O كما يلي:

I
sphere

 = I
0
 + md2  

I
sphere

 = 25 mr2 + m(d
2)2  

I
sphere

 = 25 ^ 5 ^ (5 ^ 10-2)2 + 5 ^ (1)2  

= 0.005 + 5 = (5.005)kg .m2  

I ولكن L = d - 2r وعليه:
rod

 = 1
12 m .L2

 I
rod

 = 1
12 m ^ (d - 2r)2 = 1

12 (2)(1 .9)2 = (0 .60)kg .m2

وبالتعويض عن المعادلة ، نجد أنّ القصور الذاتي الدوراني للنظام:
 I

system
 = 2

 
I
sphere

 + I
rod

 
= 2(5.005) + 0 .6  
 = (10 .6)kg .m2  

قيِّم: هل النتيجة مقبولة؟. 3
يتناسب مقدار القصور الذاتي الدوراني للنظام مع المقاييس المعطاة في المسألة .
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2-2 ¢SQódG á©LGôe

أوّلاً - قارِن بين الكتلة والقصور الذاتي الدوراني .

 (3)kg ثانيًا - احُسب القصور الذاتي الدوراني لأسطوانة مصمتة كتلتها

. I
0
 = 1

2  mr2 (20) وتتدحرج على منحدرcm وقطرها
ثالثًا - تملك كرتان الكتلة نفسها والقطر نفسه ، ولكن واحدة منهما 

فة تتركّز كتلتها على سطحها . هل تملك  مصمتة والأخرى مجوَّ
هاتان الكرتان القصور الذاتي الدوراني نفسه عندما تدوران حول 

محور يمرّ بمركز كتلتهما؟ لماذا؟
رابعًا - (أ) احُسب القصور الذاتي الدوراني لنظام مكوّن من عصا 

طولها cm(65) وكتلتها مهملة تنتهي بكتلتين نقطيتين متساويتين 
مقدار كلّ منهما kg(30. 0) عندما تدور العصا حول أحد طرفيها 

. (I
0
 = mr2) ّ(شكل 74) علمًا أن

(65)cm 

(شكل 74)

(ب) احُسب القصور الذاتي الدوراني للنظام نفسه عندما تدور العصا 
حول مركز كتلتها .

(جـ) قارِن بين نتيجة (أ) ونتيجة (ب) .
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¿GQhódG Éμ«eÉæjO 

Rotational Dynamics
3-2 ¢SQódG

áeÉ©dG ±GógC’G

يطبقّ معادلات الحركة الدورانية المنتظمة . 
يعرّف الجسم المصمت . 
يطبقّ معادلات الحركة الدورانية المنتظمة العجلة . 
يقارن بين معادلات وقوانين الحركة الخطيّة والدورانية . 
يذكر قوانين نيوتن الثلاثة في الحركة الدورانية . 
يطبقّ قوانين نيوتن الثلاثة في الحركة الدورانية . 
يحسب مقدار الشغل والطاقة الحركية في الحركة الدورانية . 
يعرّف القدرة . 

(شكل 75)
تنتج الحركة الخطيّة من الحركة الدورانية .

في السنوات السابقة ، درسنا كينماتيكا وديناميكا الحركة الخطيّة ، وتعرّفنا 
معادلاتها واستخدمنا القوانين الثلاثة لنيوتن في حلّ مسائل الحركة 

الخطيّة . كما درسنا في السنة الماضية كينماتيكا الحركة الدورانية من 
حركة دورانية منتظمة وحركة دورانية منتظمة العجلة ، فتعرّفنا معادلاتها 

واستخدمناها في إيجاد الإزاحة الزاوية والسرعة الدورانية (الزاوية) 
والعجلة الزاوية ، وغيرها .

أماّ في هذا الدرس ، واستكمالاً لما تعلمّناه سابقًا في الحركة ، فسنتناول 
ديناميكا الحركة الدورانية ، وسنذكر نصوص القوانين الثلاثة لنيوتن للحركة 
الدورانية وسنقارن بينها وبين قوانين نيوتن للحركة الخطيّة ، كما سنستخدم 

تلك القوانين لتفسير مسائل عملية مرتبطة بحياتنا اليومية وحلهّا .
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(شكل 76) 

1 . áª¶àæŸG á«fGQhódG ácô◊Gh áª¶àæŸG á«fGQhódG ácô◊G
 á∏é©dG

Uniform Circular Motion and Uniform Varied 
Circular Motion

نظرًا لأهمّية أنواع الحركة الدورانية في تطبيق قوانين ديناميكا الدوران ، 
نرى من الضروري أن نذكر تعريفات الكينماتيكا الدورانية ومعادلاتها:

:Uniform Circular Motion (أ) حركة دورانية منتظمة
تكون الحركة الدورانية لجسم ما منتظمة حين يقطع الجسم على محيط الدائرة 

أقواسًا متساوية في أزمنة متساوية . أي أنّ نصف القطر يمسح زوايا متساوية في أزمنة 
متساوية ، وبالتالي يكون مقدار السرعة الزاوية ثابتاً .

Δθ= ωt

 rad هي تغيُّر الإزاحة الزاوية وتقُاس بوَحدة Δθ = θ - θ
0
حيث إنّ 

و ω هي السرعة الزاوية وتقُاس بوَحدة rad/s بحسب النظام الدولي 
للوَحدات .

وكذلك يمكن التعبير عن الحركة الدورانية المنتظمة باستخدام:

Δs = vt

علمًا أنّ Δs هي المسافة التي يقطعها الجسم على محيط الدائرة بسرعة 
خطيّة v ثابتة المقدار وتساوي v = r ω ، حيث تساوي r نصف قطر 

المسار الدائري . 
 :Uniform Varied Circular Motion (ب) الحركة الدورانية منتظمة العجلة

ك حركة دورانية بالنسبة إلى الزمن تغيرًّا  عندما تتغيرّ السرعة الزاوية للجسم المتحرِّ
منتظمًا ، تكون العجلة الزاوية ثابتة ، أي أنّ:

θ" = Δω
Δt  = constant

نعرّف الحركة الدورانية بأنهّا حركة دورانية منتظمة العجلة .
وتكون إشارة "θ موجبة عند تسارع الجسم وسالبة عند تباطئه .

يمكن استنتاج معادلات الحركة الدورانية من معادلات الحركة الخطيّة 
x = vt + x ، وذلك بإبدال الإزاحة الخطيّة x بالإزاحة الزاوية 

0
المنتظمة 

ω = vr والعجلة الخطيّة a بالعجلة  θ والسرعة الخطيّة v بالسرعة الزاوية 
. θ" = ar الزاوية 

أماّ معادلات الحركة الدورانية منتظمة العجلة فهي:
ω = ω

0
 + θ" t  

ω2 = ω2
0
 + 2 θ" θ  

 θ = ω
0
t + 12 θ"t2  
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2 . ácô◊G ‘ âª°üŸG º°ù÷Gh á«£≤ædG á∏àμdG
á«fGQhódG

The Particle and the Solid in Circular Motion
تعريف الجسم المصمت: هو نظام من جزيئات تبعد عن بعضها بعضًا مسافات 

ثابتة ، وهو ثابت الشكل لا يتغيرّ بتأثير القوى الخارجية أو عزوم القوى ، أي أنهّ غير 
قابل للتشكيل أو التشويه .

عند دراسة الحركة الخطيّة ، ليس من المهمّ أن نفرّق بين كتلة نقطية 
أو جسم مصمت ، لأنّ حركة الجسم الخطيّة تتمثلّ بحركة تلك الكتلة 

النقطية التي هي الجسم نفسه أو بحركة مركز ثقله إن كان جسمًا 
مصمتاً . ولكنّ الأمر مختلِف في الحركة الدورانية ، فإنّ لشكل الجسم 

وكيفية توزيع كتلته بالنسبة إلى محور الدوران تأثير على حركته . فيمكننا 
ملاحظة أنّ زمن وصول أسطوانة مفرَغة إلى أسفل المنحدر يختلف عن 
زمن وصول أسطوانة مصمتة لها نفس الكتلة ونصف القطر ، وأنّ تطبيق 

معادلات الحركة الدورانية على كتلة نقطية يختلف عن تطبيقها على 
جسم مصمت ، وذلك لاختلاف قصورها الذاتي الدوراني ، فلا نستطيع 

على سبيل المثال أن نقول إنّ الحركة الدورانية لجسم مصمت تتمثلّ 
بحركة مركز ثقله .

3 .á«fGQhódG ácôë∏d øJƒ«f ÚfGƒb
Newton's Laws of Circular Motion

على الرغم من الاختلاف في طريقة دراسة حركة الجسم بين الحركة 
الخطيّة والدورانية وتحليلها ، إلاّ أنّ القوانين الثلاثة لنيوتن في الحركة 

الخطيّة لا تزال تطُبَّق على الحركة الدورانية:

á«fGQhódG ácôë∏d øJƒ«æd ∫qhC’G ¿ƒfÉ≤dG 1. 3
Newton's First Law of Circular Motion

هل يستطيع دولاب ساكن أن يدُير نفسه؟ هل يمكن أن نزيد السرعة 
الزاوية لدولاب يتحرّك بحركة دورانية منتظمة أو أن ننُقِصها من دون تأثير 

خارجي على الدولاب؟
يعجز الجسم في الحركة الخطيّة عن تغيير حالته الحركية من دون أن تؤثرّ 

فيه قوى خارجية . كذلك الأمر في الحركة الدورانية ، فالجسم الساكن 
لا يستطيع تدوير نفسه من سكون أو تغيير حركته الدورانية من دون تأثير 

عزم قوّة خارجية . 
وقد نصّ القانون الأوّل لنيوتن للحركة الدورانية على التالي:

ك يستمر في حركته الدورانية  “يبقى الجسم الساكن ساكناً ، والجسم المتحرِّ
المنتظمة ما لم يؤثرّ عليهما عزم قوّة خارجيةّ“ .

وكما ذكرنا سابقًا ، هذا ما يعُرَف بخاصّية القصور الذاتي الدوراني .
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(شكل 77)
تتحرّك الكتلة m على مسار دائري نتيجة قوّة 

. θ" = 
a
r F بعجلة زاوية  مماسية 

á«fGQhódG ácôë∏d øJƒ«æd ÊÉãdG ¿ƒfÉ≤dG 2. 3
Newton's Second Law of Circular Motion

لنأخذ كتلة نقطية (m) موجودة فوق سطح أفقي أملس عديم الاحتكاك ومربوطة 
بخيط مهمَل الكتلة إلى نقطة O التي تمثلّ محور الدوران (شكل 77) .

عند تطبيق قوّة مماسّية خارجية F عمودية على الخيط ، تتحرّك الكتلة 
F = m . a :النقطية بعجلة خطيّة بحسب القانون الثاني لنيوتن

ولكن من جهة ثانية ، إنّ التأثير على الكتلة بالقوّة F يؤديّ إلى دوران 
، θ" = ar الجسم حول محور يمرّ بالنقطة O ، أي أدىّ إلى عجلة دورانية 

وبالتعويض في قانون نيوتن ، نحصل على : 

F = m .r .θ"

: r وينتج عن ضرب طرفي المعادلة بمقدار نصف القطر
 F ^ r

 
= m .r2 .θ"

وكما رأينا سابقًا ، إنّ m .r2 هي مقدار القصور الذاتي الدوراني I للكتلة 
النقطية m حول محور الدوران ، وإنّ F ^ r تساوي مقدار عزم القوّة 

الخارجية τ وبالتالي تصبح المعادلة على النحو التالي:

τ = I ^ θ"

هذه المعادلة هي نتيجة تطبيق القانون الثاني لنيوتن على كتلة نقطية 
واحدة تدور حول محور ثابت ، ولكن يمكن تعميم النتيجة وتطبيقها على 

نظام يدور حول محور ثابت نتيجة محصّلة عزوم قوى لتصبح:
 ∑τ = I ^ θ"

حيث إنّ I تمثلّ مقدار القصور الذاتي الدوراني للنظام .
وبالمقارنة بين القانون الثاني لنيوتن للحركة الدورانية وقانونه للحركة 

الخطيّة ، نستنتج أنّ عزم القوّة حلّ مكان القوّة وأنّ مقدار القصور 
الذاتي الدوراني حلّ مكان الكتلة وأنّ العجلة الزاوية حلتّ مكان العجلة 

الخطيّة .
كذلك نلاحظ أنّ عزم دوران القوّة والعجلة الزاوية كمّيتان متجّهتان لهما 

الاتجّاه نفسه تمامًا مثل القوّة والعجلة الخطيّة .
وعليه ، نكتب نصّ القانون الثاني لنيوتن للحركة الدورانية:

محصّلة عزوم القوى الخارجية المؤثرّة في النظام حول محور دوران ثابت تساوي 
حاصل ضرب العجلة الدورانية والقصور الذاتي الدوراني حول محور الدوران 

نفسه .
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(1) ∫Éãe

تدور كتلة نقطية m= (2)kg حول محور ثابت يبعد عنها cm(50) بتأثير محصّلة عزوم قوى خارجية 
ثابتة τ كما بالشكل (78) .

f بدأت الكتلة حركتها من سكون واكتسبت سرعة بتردد
.(3 .14)s (2) في خلالrev/s مقداره

(أ) احُسب العجلة الزاوية .
. τ (ب) احُسب محصّلة عزوم القوى الخارجية

طريقة التفكير في الحلّ
1 .

(شكل 78)

O m(0.5)m

حلِّل: اذُكر المعلوم وغير المعلوم . 
 m = (2)kg :المعلوم: الكتلة

r = (50)cm نصف القطر  
ω

0
 = (0)rad/s :السرعة الزاوية الابتدائية  

ω = 2πf = (12 .566)rad/s (3 .14)s السرعة الزاوية بعد  
غير المعلوم: (أ) مقدار العجلة الزاوية

(ب) محصّلة عزوم القوى الخارجية  
احُسب غير المعلوم .. 2

(أ) بتطبيق معادلات الحركة الدورانية منتظمة العجلة ، وبالتعويض عن المقادير المعلومة ، نجد: 
ω = ω

0
 + θ"t = θ"t  ⇒  θ" = ω

t  = 12 .566
3 .14  = (4)rad/s2

(ب) بحساب مقدار القصور الذاتي الدوراني للكتلة النقطية حول محور الدوران: 
I = m .r2 = 2 ^ (0 .5)2 = (0 .5)kg .m2

بالتعويض عن المقادير في معادلة القانون الثاني لنيوتن ، نحصل على محصّلة عزوم القوى الخارجية:
∑τ = I .θ" = 0 .5 ^ 4 = (2)N .m

قيِّم: هل النتيجة مقبولة؟. 3
النتيجة مقبولة وتتلاءم مع المقادير المعطاة في المسألة .
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(2) ∫Éãe

يدور برغي حول محور يمرّ بمركز كتلته بتردد rev/min(3600) . وفي لحظة t = (0)s يؤثرّ عليه 
عزم الازدواج ثابت بعكس اتجّاه الدوران يؤديّ إلى توقفّه عن الدوران بعد دقيقة واحدة . علمًا أنّ 

القصور الذاتي الدوراني له يساوي I = (0 .2)kg .m2 ، احُسب:
(أ) عزم الدوران الذي أدىّ إلى توقفّه .

(ب) عدد الدورات التي أكملها البرغي من لحظة تأثير الازدواج حتىّ توقفّه .
طريقة التفكير في الحلّ

حلِّل: اذُكر المعلوم وغير المعلوم .. 1
 I = (0 .2)kg .m2 :المعلوم: القصور الذاتي الدوراني

f = 3600
60  = 60 rev/s  

  ω
0
 = 2πf = (120π)rad/s :السرعة الزاوية الابتدائية  

  ω = (0)rad/s:(1)min السرعة الزاوية بعد  
 τ = ? غير المعلوم: (أ) عزم الازدواج

N = ? ّ(ب) عدد الدورات قبل التوقف  
احُسب غير المعلوم .. 2

(أ) باستخدام القانون الثاني لنيوتن للحركة الدورانية:
  Στ = I .θ" & θ" = Στ

I
نستنتج أنّ الحركة دورانية منتظمة العجلة لأنّ العجلة الزاوية ثابتة .

باستخدام معادلات الحركة الخطيّة منتظمة العجلة:

 ω = θ"t + ω
0
 & θ" = - 

ω
0

t  = -120π
60  = (-2π)rad/s2

 τ = I . θ" = 0 .2 ^ (-2π) = (-1 .256)N .m : وبالتعويض عن المقادير المعلومة ، نجد
(ب) وبإيجاد الإزاحة الزاوية في خلال مدّة التوقفّ:

Δθ = 12 θ" .t2 + ω
0
 .t = 12 (-2π)(602)+ (120π)(60) = (3600π)rad

وبما أنّ الدورة الواحدة تمثلّ إزاحة زاوية مقدارها rad(2π) ، نجد أنّ عدد الدورات التي أكملها 
البرغي قبل توقفّه يساوي :

N = 3600π
2π دورة 1800 = 

قيِّم: هل النتيجة مقبولة؟. 3
تؤكّد الإشارة السالبة للعجلة على أنّ حركة البرغي هي حركة منتظمة العجلة تناقصية ، وأنّ مقدار 

ًّا كما  ًّا يسمح للبرغي بأن يكُمِل عددًا كبيرًا من الدورات قبل أن يتوقفّ نهائي العجلة الصغير نسبي
أظهرت النتيجة .

71



(شكل 79)
تدور العجلات المسنَّنة في اتجّاهين متعاكستين .

O r
Δθ

Δs

F

F

(شكل 80)

Δθ = Δs
r

Δs = r .Δθ

á«fGQhódG ácôë∏d øJƒ«æd ådÉãdG ¿ƒfÉ≤dG 3. 3
Newton's Third Law of Circular Motion
درسنا في الحركة الخطيّة القانون الثالث لنيوتن الذي ينصّ أن لكلّ فعل ردّ 

فعل يساويه في المقدار ويعاكسه في الاتجّاه . أماّ في الحركة الدورانية ، 
فنلاحظ أيضًا أنّ تدوير عجلة مسنَّنة في اتجّاه معينّ يجعل عجلة مسنَّنة 

أخرى متداخلة معها تدور في اتجّاه معاكس كما في الشكل (79) ، أي أنّ 
العزم الذي أدار العجلة الأولى أثرّ بعزم معاكس على العجلة الثانية ، ونجد 

كات . هذه الظاهرة في كثير من المحرِّ
وعليه ، نستنتج نصّ القانون الثالث لنيوتن:

”لكلّ عزم قوّة ، عزم قوّة مضادّ له (يساويه في المقدار ويعُاكِسه في الاتجّاه)" .

4 .á« q£ÿG ácô◊Gh á«fGQhódG ácô◊G ÚH á∏nKÉªŸG
Similarities Between Circular Motion and Linear 
Motion

áª¶àæe Iqƒb ΩõY øY œÉædG π¨°ûdG 4. 1
Work Done by a Constant Moment

بعد أن درسنا القوانين الثلاثة لنيوتن في الحركة الدورانية ، ولاحظنا 
التماثل بينها وقوانين الحركة الخطيّة بإبدال القوّة بعزم القوّة ، والكتلة 

بالقصور الذاتي الدوراني ، والإزاحة الخطيّة بالإزاحة الزاوية ، والسرعة 
الخطيّة بالسرعة الزاوية يمكننا أن نستنتج أنّ معادلة الشغل الناتج عن عزم 

قوّة τ في إزاحة كتلة بإزاحة زاوية θ هي:

W = τ ^ θ
 F ولبرهنة هذه النتيجة ، نأخذ كتلة نقطية تتحرّك تحت تأثير قوّة منتظمة 

 Δs مماسّية للمسار الدائري (شكل 80) بإزاحة على المنحنى تساوي
حيث يصبح الشغل الناتج عن القوّة المنتظمة يساوي:

  W = F .Δs = F .r .Δθ = F .r .(θ – θ
0
) = F .r .θ

θ لأنّ الجسم انطلق من الخطّ المرجعي ، وبما أنّ 
0
 = (0)rad باعتبار

حاصل ضرب القوّة بالمسافة العمودية بين نقطة التأثير ومحور الدوران 
يساوي عزم القوّة ، نستنتج أنّ الشغل W يساوي:

W = τ ^ θ
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O mr

V

(شكل 82)
كتلة نقطية تدور بسرعة مماسّية v حول محور 

في مسار دائري .

(3) ∫Éãe

حبل ملفوف حول قرص حديدي قطره m(2) وكتلته kg(5) . احُسب الشغل الناتج عن سحب الحبل 
بقوّة ثابتة تساوي N(50) لمسافة مترين إلى الأسفل (شكل 81) .

طريقة التفكير في الحلّ
1 .

(شكل 81)

2m

θ
Δs

حلِّل: اذُكر المعلوم وغير المعلوم . 
 r = (1)m :المعلوم: نصف قطر القرص

 m = (5)kg :كتلة القرص  
 F = (50)N :القوّة المماسّية  

d = (2)m :مسافة سحب الحبل  
غير المعلوم:
الشغل

احُسب غير المعلوم .. 2

W = τ ^ θ باستخدام معادلة الشغل  للحركة الدورانية
 W = F ^ r ^ θ = 50 ^ r ^ (d

r ) = 50 ^ 2 = (100)J
قيِّم: هل النتيجة مقبولة؟. 3

باستخدام معادلة الأبعاد ، نتحقّق من صحّة نتيجة المسألة .

á«fGQhódG ácô◊G ‘ á«cô◊G ábÉ£dG 4. 2
Kinetic Energy in Circular Motion

عرفنا في درس الطاقة والشغل أنّ معادلة الطاقة الحركية الدورانية لجسم 
. KE = 12 I ^ ω2 تساوي ω يدور بسرعة دورانية 

ولكن بعد أن تعلمّنا العلاقة بين السرعة الخطيّة والسرعة الدورانية ، 
ومماثلَة الحركة الخطيّة والدورانية ، يمكننا استنتاج معادلة الطاقة الحركية 

الدورانية من معادلة الطاقة الحركية الخطيّة بإبدال الكتلة (m) بالقصور 
.ω الذاتي الدوراني I والسرعة الخطيّة v بالسرعة الدورانية 

كما يمكننا أن نبُرهِن صحّة النتيجة كما يلي:
لنأخذ كتلة نقطية تدور بسرعة مماسّية v على مسار دائري ، نجد أنّ 
معادلة الطاقة الحركية الخطيّة للكتلة النقطية (m) التي تتحرّك بسرعة 
خطيّة v على المسار الدائري حول محور ثابت (شكل 82) تساوي:

 KE = 12 m ^ v2
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وباستبدال v = r . ω ، نكتب KE = 12 m . r2 . ω2 . ولكن mr2 تمثلّ 
القصور الذاتي الدوراني (I) للكتلة (m) حول محور الدوران ، وبالتالي 

نستنتج أنّ معادلة الطاقة الحركية الدورانية تساوي:
 

KE = 12 I ^ ω2

Power  IQó≤dG 4. 3
عرّفنا أنّ القدرة Power هي المعدّل الزمني لإنجاز الشغل ويعُبَّر عنها بالمعادلة 

التالية: 
P = dW

dt
وهي تقُاس القدرة بحسب النظام الدولي للوَحدات بوَحدة Watt . وفي 

F فإنّ القدرة تساوي: الحركة الخطيّة وبتأثير قوّة منتظمة 
. P = F .( dx

dt )
ونستنتج بالمماثلَة بين الحركة الدورانية والحركة الخطيّة أنّ القدرة نتيجة 

عزم قوّة τ تساوي:
 P = τ ^ dθ

dt  = τ ^ ω

(4) ∫Éãe

قرص مصمت كتلته m = (1)kg ونصف قطره r = (50)cm قصوره الذاتي الدوراني يساوي
I = 12 m .r2 . طبُِّق عليه عزم قوّة منتظمة مقداره τ = (5)N .m  يبدأ دورانه من سكون . 

احُسب القدرة التي يبذلها عزم القوّة في ثانيتين .
طريقة التفكير في الحلّ

حلِّل: اذُكر المعلوم وغير المعلوم .. 1
 r = (0 .5)m :المعلوم: نصف قطر القرص

 m = (1)kg :كتلة القرص  
  τ = (5)N .m :عزم القوّة المؤثرّة  

t = (2)s :زمن التأثير  
غير المعلوم:
القدرة

احُسب غير المعلوم .. 2

P = τ .ω :معادلة القدرة هي
  ω = θ" .t + ω

0
الحركة هي حركة دورانية منتظمة العجلة بما أنّ عزم القوّة ثابت وبالتالي: 

θ" = τI وبالتالي تساوي  وبتطبيق القانون الثاني لنيوتن للحركة الدورانية: "Στ = I ^ θ ، نجد أنّ 
السرعة الزاوية: 

 ω = θ" .t + ω
0
 = τI  ^ t
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(™HÉJ) (4) ∫Éãe

وبالتعويض عن معادلة القدرة ، نحصل على:
 τ = I θ" ⇒ θ" = τ

I
 P = τ . ω

 ω = ω
0
 + θ"t

 P = τ . θ"t = τ ( τ
I

) t =  τ2 t
I

 = 
(τ)2. t
1
2

 mr2
 = 

2(τ)2^ t
mr2

     

 = 2 ^ 52 ^ 2
1 ^ 0 .52

 = (400)W

قيِّم: هل النتيجة مقبولة؟. 3
النتيجة منطقية تتلاءم مع المقادير المعطاة ، أي كتلة القرص ومقدار عزم القوّة وزمن التأثير .

3-2 ¢SQódG á©LGôe

 g = (10)m/s2حيثما لزم الأمر اعتبر أن
أوّلاً - اِشرح لماذا حاصل جمع العزوم المؤثرّة في جسم يدور بسرعة زاوية ثابتة يساوي صفرًا .

ثانيًا - تدور عجلة درّاجة قطرها m(1.5) وكتلتها m= (4)kg مركّزة على سطح العجلة الخارجي 
حول مركز كتلتها تحت تأثير عزم قوّة مماسية مقدارها F = (6)N . تنطلق حركة دوران هذه العجلة 

. Δt = (5)s احُسب عدد الدورات التي تكُمِلها العجلة في . t = (0)s من السكون في
ثالثًا - تطُلقَ صخرة كروية الشكل قطرها cm(30) صعودًا على منحدر يميل على الأفق 15º بسرعة 
 h (40) . تتدحرج هذه الصخرة صعودًا من دون أن تنزلق . احُسب الارتفاعrad/s زاوية مقدارها

الذي وصلت إليه هذه الصخرة عند توقفّها ، علمًا أنّ القصور الذاتي الدوراني للكرة حول محور يمرّ 

(شكل 83)

T
1

T
2 m

1
 = (4)kgm

2
 = (3)kg

60º 60º

30º

 . I = 25 mr2 :بمركزها الهندسي ويساوي
m بحبل عديم 

1
 = (4)kg رابعًا - تعُلَّق كتلة مقدارها

m ، ويمرّ الحبل 
2
 = (3)kg الوزن بكتلة مقدارها

في تجويف بكرة نصف قطرها m(60. 0) وقصورها 
الذاتي الدوراني حول محور الدوران يساوي (0.5)

ح في الشكل (105) . kg m2 ، كما هو موضَّ

(أ) احُسب تسارع الكتلتين .
. T2و T1 (ب) احُسب مقدار القوّتين

خامسًا - تسُتخدَم بكرة قطرها m(2. 1) وكتلتها kg(5) لإنزال وعاء مياه فارغ كتلته kg(3) عن 

سطح أحد الأبراج ، يسقط الوعاء من السكون لمدّة s(4) . اِستخدِم القصور الذاتي الدوراني للبكرة           
. I = 12 mr2

(أ) احُسب العجلة الخطيّة للوعاء .
(ب) ما هي المسافة التي قطعها الوعاء خلال s(4)؟

(جـ) احُسب العجلة الزاوية للبكرة .
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(L) ájhGõdG ácô◊G á« qªc

Angular Momentum
4-2 ¢SQódG

áeÉ©dG ±GógC’G

يعرّف كمّية الحركة الزاوية لكتلة تدور حول محور . 
يعرّف كمّية الحركة الزاوية لنظام يدور حول محور . 
يستنتج العلاقة بين كمّية الحركة الزاوية والسرعة الزاوية . 
يذكر نصّ قانون كمّية الحركة الزاوية . 
يذكر العلاقة بين كمّية الحركة الزاوية وعزم الدوران . 
يستنتج قانون حفظ (بقاء) كمّية الحركة الزاوية . 
يفسّر بعض المشاهدات اعتمادًا على مبدأ حفظ (بقاء) كمّية الحركة الزاوية . 
يطبقّ قانون حفظ كمّية الحركة الزاوية في حلّ مسائل عددية .  

(شكل 84) 

ك على مسار خطيّ قصور ذاتي للحركة  درسنا سابقًا ، أنّ لكلّ جسم متحرِّ
وهو كمّية الحركة الخطيّة للجسم ، وأطلقنا عليه تسمية كمّية الحركة من 
دون الإشارة إلى أنهّا خطيّة لأننّا في تلك الدروس لم نكن قد تطرّقنا بعد 

إلى الحركة الدورانية .
ولكن بعد أن درسنا القوانين الثلاثة لنيوتن في الحركة الدورانية وتعرّفنا 
مفهوم القصور الذاتي الدوراني للأجسام التي تدور حول محور محدّد 

وكيف أنّ هذه الأجسام تستمرّ في دورانها إلى أن يطرأ عليها ما يوقِفها . 
سنضُيف في هذا الدرس ، إلى ما تعلمّناه ، مفهوم كمّية الحركة الزاوية 

للأجسام التي تتحرّك بحركة دورانية حول محور محدّد ، لتكتمل لدينا 
كافةّ المفاهيم المتعلِّقة بالحركة ، خطيّة كانت أم دورانية أو مركّبة من 

الاثنين معًا .
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v

mr

Δ

(شكل 85)

تتحرّك الكتلة (m) حول المحور (Δ) بسرعة 
مماسّية v بالاتجّاه الموجب .

1 .ájhGõdG ácô◊G á« qªc ∞jô©J
Definition of Angular Momentum 

ك حركة خطيّة بأنهّا القصور  عرّفنا كمّية الحركة الخطيّة للجسم المتحرِّ
الذاتي للجسم . وبالمثل ، القصور الذاتي الدوراني للأجسام التي تتحرّك 

. L حركة دائرية يسُمّى كمّية الحركة الزاوية ويمُثَّل بالحرف اللاتيني
وبالمماثلَة مع كمّية الحركة الخطيّة فإنّ كميّة الحركة الزاوية هي كميّة متجَّهة 

مقدارها يساوي حاصل ضرب القصور الذاتي الدوراني في السرعة الزاوية . بالنسبة 
لجسم يدور حول محور معينّ:

L = I . ω

أماّ اتجّاهها فهو اتجّاه متجَّه السرعة الدورانية على طول محور الدوران . 
ولكن في هذا الدرس ، لن نتطرّق إلى الاتجّاه بطريقة رياضية بل سنشُير 

إليه لفهم بعض المشاهدات الحياتية . 
تقُاس كمّية الحركة الزاوية بحسب النظام الدولي للوَحدات بوَحدة

 . kg.m2/s

 Qƒfi ∫ƒM QhóJ á«£≤f á∏àμd ájhGõdG ácô◊G á« qªc 1. 1
âHÉK

Angular Momentum of a Particle Rotating About a 
Fixed Axis

لنأخذ كتلة نقطية m تدور حول محور ثابت Δ بالاتجّاه الموجب ، بسرعة 
دورانية مقدارها ω ، مقدار السرعة الخطيّة للكتلة يساوي v = r. ω . حيث 
r هي المسافة العمودية بين الكتلة ومحور الدوران واتجّاهها مماسّي للمسار 

الدائري الشكل (85) . بالتعويض عن المقادير في المعادلة ، نجد أنّ:
L = m .v .r
v = r. ω

L = m .r2 .ω

L = I . ω
أي في حالة كتلة نقطية تدور حول محور ثابت ، مقدار كمّية الحركة 

الزاوية يساوي حاصل ضرب كمّية الحركة الخطيّة في نصف قطر المسار 
الدائري .
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á«FGôKEG Iô≤a

É«LƒdƒæμàdGh AÉjõ«ØdG

الطائرة المروحية

ماذا يحدث إذا كان للطائرة 
المروحية مروحة واحدة بدلاً من 

اثنتين؟
ًّا  ك الطائرة عزمًا داخلي يصُدِر محرِّ

للنظام وبذلك تكون كمّية الحركة 
الزاويةة للطائرة محفوظة وتساوي 
صفرًا . يعني ذلك أنّ جسم الطائرة 
سيدور عند الإقلاع باتجّاه معاكس 
لدوران المروحة ، ولهذا تثُبَّت على 
أحد جوانب الذيل مروحة صغيرة 

تدور بشكل رأسي متعامِد على 
المروحة الرئيسة ، للتحكّم باتجّاه 
الطائرة ، ولتتغلبّ الطائرة على ردّ 

الفعل المضادّ لدوران المروحة 
الرئيسة .

كما تجُهَّز طائرات بمروحة أخرى 
كبيرة تدور باتجّاه عكسي للمروحة 

الأولى ، ما يجعل محصّلة كمّية 
الحركة الزاوية على الطائرة تساوي 

صفرًا ويمنع دورانها .

ájhGõdG ácô◊G á« qªc √É qŒG 2 . 1
Direction of Angular Momentum 

لقد أشرنا سابقًا إلى أننّا لن نتناول اتجّاه كمّية الحركة باستخدام ضرب 
المتجَّهات بل سنعتمد الاصطلاح التالي:

اتجّاه كمّية الحركة الزاوية هو دائمًا على طول محور الدوران ويكون 
إلى خارج الصفحة عندما تدور الكتلة بالاتجّاه الموجب (عكس عقارب 
الساعة) ، وبالتالي تكون كمّية الحركة الزاوية موجبة ، والعكس صحيح ، 

فعندما تدور الكتلة بالاتجّاه السالب (مع عقارب الساعة) يكون متجَّه 
كمّية الحركة الزاوية داخل الصفحة على طول محور الدوران ، وتكون 

كمّية الحركة الزاوية سالبة .

âHÉK Qƒfi ∫ƒM Qhój ΩÉ¶æd ájhGõdG ácô◊G á« qªc 1. 3
Angular Momentum For a System Rotating Around 
a Fixed Axis
فلنأخذ نظامًا مؤلفًّا من مجموعة من الكتل النقطية تدور حول محور ثابت 

كما في الشكل (86) . إنّ كميّة الحركة الزاوية للنظام بالنسبة إلى محور الدوران 
Δ في أيّ لحظة زمنية تساوي مجموع كميّة الحركة الزاوية لأجزائه بالنسبة إلى 

 . Δ المحور

r
1

r
2

r
n

m
1

m
n

m
2

Δ

(شكل 86)

. Δ نظام مؤلفّ من عدد من الكتل النقطية تدور حول المحور الثابت

L
system

 = L
1
 + L

2
 + L

3
 + …+ L

n

= m
1
 .r

1
2 .ω

1
 + m

2
 .r

2
2 .ω

2
 + … + m

n
 .r2

n
 .ω

n
  =∑m

i
r

i
2ω

i

وبما أنّ جميع كتل النظام لها السرعة الدورانية نفسها ، نستنتج أنّ كمّية 
الحركة الزاوية للنظام تساوي:

L
system

 = I
system

 .ω
I تساوي القصور الذاتي الدوراني للنظام .

system
 = ∑m

i
 .r

i
حيث إنّ 2

L
system

 = ∑m
i
 .r

i
2ω
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(1) ∫Éãe

. (1 ̂  10-3) kg .m2 :كتلتان نقطيتان تدوران حول محور ثابت ، لهما مقدار القصور الذاتي نفسه ويساوي
تدور الكتلة الأولى بسرعة زاوية rad/s(5) بالاتجّاه الموجب ، بينما تدور الكتلة الثانية بسرعة زاوية 

rad/s(8) بالاتجّاه المعاكس .
(أ) احُسب مقدار كمّية الحركة الزاوية لكلّ كتلة على حدة حول محور الدوران .

(ب) احسب كمّية الحركة الزاوية للنظام حول محور الدوران .
طريقة التفكير في الحلّ

حلِّل: اذُكر المعلوم وغير المعلوم .. 1
I
1
 = I

2
 = (1 ^ 10-3)kg .m2 :المعلوم: القصور الذاتي الدوراني لكلّ كتلة

ω  بالاتجّاه الموجب .
1
 = (5)rad/s :السرعة الزاوية للكتلة الأولى  

ω بالاتجّاه السالب .
2
 = (8)rad/s :السرعة الزاوية للكتلة الثانية  

L لكلّ كتلة
2
L و 

1
غير المعلوم: (أ) كمّية الحركة الزاوية 

L
system

(ب) كمّية الحركة الزاوية للنظام   
احُسب غير المعلوم .. 2

(أ) باستخدام معادلة كمّية الحركة الزاوية وبالتعويض عن المقادير المعلومة ، نحصل على:
L

1
 = I

1
 .ω

1
 = 1 ^ 10-3 ^ 5 = (5 ^ 10-3)kg . m2/s

كمّية الحركة موجبة لأنّ الكتلة تدور بالاتجّاه الموجب .
L

2
 = I

2
 .ω

2
 = 1 ^ 10-3 ^ (-8) = (-8 ^ 10-3)kg .m2/s

كمّية الحركة سالبة لأنّ الكتلة تدور بالاتجّاه السالب .
(ب) كمّية الحركة الزاوية للنظام المؤلفّ من كتلتين بالنسبة إلى محور الدوران Δ في أيّ لحظة زمنية 

تساوي محصّلة كمّية الحركة الزاوية لكلّ كتلة بالنسبة إلى المحور Δ ، أي أنّ:
L

system
 = L

1
 + L

2

وبالتعويض عن مقادير كمّية الحركة الزاوية لكلّ كتلة ، نجد:
L

system
 = L

1
 + L

2

= 5 ^ 10-3 + (-8 ^ 10-3) = (-3 ^ 10-3)kg .m2/s
قيِّم: هل النتيجة مقبولة؟. 3

تؤكّد النتيجة السالبة لكمّية الحركة الزاوية صحّة الإجابة ، حيث إنّ محصّلة كمّية الحركة الزاوية 
ًّا مع مقدار  تكون باتجّاه الكتلة ذات السرعة الزاوية الأكبر ، فكمّية الحركة الزاوية تتناسب طردي

السرعة الزاوية .
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الحركة الدورانيةالحركة الخطية

xθ = xr

vω = v
r

aθ" = a
r

mI
Fτ

x = vt + x
0θ = ωt + θ

0

x = 1
2 at2 + v

0
t

v = at + v
0

 θ = 1
2 θ"t2 + ω

0
t

ω = θ"t + ω
0

∑F = m ^ a∑τ = I ^ θ"

W = F ^ dW = τ ^ θ

KE = 1
2  m.v2KE = 1

2  I.ω2

p = mvL = I ω

F = ΔP
Δt∑τ = ΔL

Δt
(جدول 2)

(شكل 87)
راكب درّاجة يتحرك في مسار دائري

2 .(τ) ¿GQhódG ΩõYh (L) ájhGõdG ácô◊G á« qªc
Angular Momentum and Moment
كما نعلم ، محصّلة القوى الخارجية المؤثرّة في الجسم تؤديّ إلى تعجيل 

حركته ، وبالتالي تتسببّ في تغيُّر كمّية الحركة الخطيّة له . بالمثل ، إنّ 
محصّلة عزم القوّة ، وبحسب القانون الثاني لنيوتن للحركة الزاوية ، تؤديّ 

إلى حركة الجسم بعجلة دورانية وبالتالي إلى تغيير سرعته الزاوية .
أي أنّ محصّلة عزوم القوى الخارجية تسببّ تغيير كمّية الحركة الزاوية 

للجسم . ويمكن التعبير عن ذلك بالمعادلة الرياضية التالية التي تمثلّ قانون 
كمّية الحركة الزاوية:

Στ = dL
dt

ويمكن التوصّل إلى قانون كمّية الحركة الزاوية باستخدام القانون الثاني 
لنيوتن للحركة الدورانية:

 
Στ = I .θ" = I .dω

dt

∑τ = d(I .ω)
dt وبالتالي 

∴ L = I . ω
⇒Στ = dL

dt

وعليه ، نصُيغ قانون كمّية الحركة الزاوية كما يلي:
معدّل كميّة الحركة الزاوية حول محور ثابت بالنسبة إلى الزمن يساوي محصّلة 

عزوم القوى الخارجية المؤثرّة في الجسم حول المحور نفسه .

3 .ájhGõdG ácô◊G á« qªc ßØM
Conservation of Angular Momentum

إذا كانت محصّلة عزوم القوى الخارجية المؤثرّة في النظام المعزول 
تساوي صفرًا ، تبقى كمّية الحركة الزاوية للنظام ثابتة في المقدار والاتجّاه .
ًّا ، بالمعادلة التالية: ويعُبَّر عن قانون حفظ (بقاء) كمّية الحركة الزاوية ، رياضي

Στ = 0  &  dL
dt  = 0  &  L

i
 = L

f
  &  I

i
 ω

i
 = I

f
 ω

f

أي أنّ كمّية الحركة الزاوية الابتدائية للنظام تساوي كمّية الحركة الزاوية 
النهائية للنظام .
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4 .ájhGõdG ácô◊G á« qªc (AÉ≤H) ßØM ≈∏Y äÉ≤«Ñ£J
Applications on Conservation of Angular 
Momentum

ومن التطبيقات العملية على حفظ (بقاء) كمّية الحركة الزاوية:
(1) تغيُّر السرعة الدورانية للمتزلجّ على الجليد عندما تقوم بتغيير مقدار 

القصور الذاتي الدوراني بتغيُّر وضعية جسمها (شكل 88) .

(شكل 88)
متزلجّ جليد

(2) لاعب الجمباز عندما يدور بحرّية في غياب عزم قوّة غير متوازن 
على جسمه ، ممّا يجعل كمّية الحركة الزاوية ثابتة عند تحريك بعض 

أجزاء الجسم باتجّاه محور الدوران أو بعيدًا عنه ممّا يغيرّ قصوره الذاتي 
الدوراني (شكل 89) وهذا يفسّر حفظ (بقاء) كمّية الحركة الزاوية .

كة بسرعة أكثر  (3) صعوبة سقوط راكب الدراجة عنها عندما تكون متحرِّ
بينما يكون سقوطه أسهل عندما تكون ساكنة . فإن دارت عجلة درّاجة 
بمستوى معينّ لا يمكن تغيير مستوى دورانها بسهولة ما لم يؤثرّ فيها 

عزم جانبي خارجي لأنّ العجلة تملك استمرارية في الدوران في مستواها 
لامتلاكها كمّية حركة زاوية كبيرة تساعد راكب الدرّاجة على التوازن 

أثناء الحركة .
 

(شكل 89)
يتمّ التحكمّ بالسرعة الزاوية بواسطة التغيرّ في القصور الذاتي الدوراني للجسم مع الاحتفاظ بكميّة الحركة 

الزواية ، وذلك أثناء الشقلبة الأمامية .
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5 .ΩÉ¶æ∏d ÊGQhódG »JGòdG Qƒ°ü≤dG tÒ¨J
Change in Moment of Inertia

يقف الرجل في الشكل (90) على منضدة دوّارة ذات احتكاك مهمَل ، 
ويحمل في يديه الممدودتين أوزاناً ضخمة تجعل مقدار قصوره الذاتي 

I ، ولهذا يدور ببطء حول محور الدوران كما في الشكل 
i
الدوراني كبير 

(90 أ) . ولكن إذا قام بثني يده نحو جسمه فإنّ قصوره الذاتي الدوراني 
I سوف يقلّ إلى حدّ كبير كما في الشكل (90 ب) . فما هي نتيجة تغيُّر 

f

القصور الذاتي الدوراني على حركته؟ هل ستزيد سرعته ولماذا؟
القوّة الخارجية المؤثرّة في النظام هي: وزن الجسم والأوزان واتجّاهها 

عمودي إلى الأسفل . هذا يعني أنّ عزم دورانها حول محور الدوران 
يساوي صفرًا .

قوّة ردّ فعل المنضدة على الرجل عمودية إلى الأعلى ، ويساوي عزم 
دورانها حول محور الدوران صفرًا ، وبالتالي محصّلة عزوم القوى 

الخارجية المؤثرّة في النظام تساوي صفرًا ، أي أنّ كمّية الحركة الزاوية 
للنظام محفوظة :

Στ = 0 & dL
dt  = 0 & L

i
 = L

f

I
i
 .ω

i
 = I

f
 .ω

f
  &  ω

f
= 

I
i
ω

i
I
f

ω وهذا يفسّر سبب زيادة سرعة الرجل 
i
 < ω

f
I نستنتج أنّ 

f
 < I

i
وبما أنّ 

الدورانية بعد ثني يديه .

(أ) (ب)

(شكل 90)
يقلّ القصور الذاتي الدوراني عندما يطوي الرجل ذراعيه أثناء دورانه ما يزيد من سرعته الزاوية .
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(2) ∫Éãe

تدور كرة صغيرة كتلتها g(100) مربوطة بخيط مهمل الكتلة ، يمرّ طرفه الآخر في ثقب ، على سطح 
 v = (2 .8)m/s بسرعة مماسّية ثابتة المقدار r = (60)cm أفقي أملس في مسار دائري نصف قطره

. r’ = (30)cm يشَُدّ بالخيط ليصبح نصف قطر المسار الدائري ، t (شكل 91) . خلال لحظة
احُسب مقدار السرعة الزاوية النهائية للكرة بعد شد الخيط .

طريقة التفكير في الحلّ
1 .

F

R

(شكل 91)

حلِّل: اذُكر المعلوم وغير المعلوم . 
m = (100)g :المعلوم: الكتلة

r = (60)cm : نصف القطر  
 v = (2 .8)m/s :السرعة الابتدائية المماسّية  
r’ = (30)cm :نصف القطر بعد شدّ الخيط  

غير المعلوم:
 ω

f
السرعة الزاوية النهائية للكرة بعد شدّ الخيط ? = 

احُسب غير المعلوم .. 2

حركة الكرة هي حركة دائرية منتظمة بما أنّ السرعة المماسّية للكرة ثابتة . نستنتج أنّ محصّلة عزوم 
القوى المؤثرّة تساوي صفرًا ، وبالتالي كمّية الحركة الزاوية محفوظة .

L
i
 = L

f
وبتطبيق قانون حفظ (بقاء) كمّية الحركة الزاوية: 

  I
i
 .ω

i
 = I

f
 .ω

f
  =>  ω

f
= 

I
i
 .ω

i
I
f

 = 
(m .r2) .ω

i
m .r’2

وبما أنّ v = rω وبالتعويض عن المقادير في المعادلة ، نحصل على:
ω

f
 = r .vr’2

 ω
f
 = 

0 .6 ^ 2 .8
(0 .3)2

   =(18,66) rad/s

قيِّم: هل النتيجة مقبولة؟. 3
يعني تقصير طول الخيط تناقص مقدار القصور الذاتي الدوراني للنظام ، وبالتالي زيادة السرعة الزاوية 

ω ، وبمقارنتها 
i
 = vr  = (4 .7)rad/s النهائية للنظام . وبحساب السرعة الزاوية الابتدائية التي تساوي

بالسرعة الزاوية النهائية ، تبينّ لنا بوضوح زيادة السرعة الزاوية عند تقليل القصور الذاتي الدوراني 
فنتحقّق بذلك من صحّة الإجابة .
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á«FGôKEG Iô≤a

∂∏ØdG º∏©H §HôdG

المجرّات الحلزونية
تؤديّ أشكال المجرّات ، مثل 

مجرّتنا درب التبانة ، دورًا كبيرًا في 
الحفاظ على كمّية الحركة الزاوية . 
إذا اعتبرنا أنّ كتلة كروية من الغاز 

في الفضاء بدأت تتقلصّ تحت 
تأثير جاذبيتها ، فإذا كانت تمتلك 

حتىّ ولو دوراناً خفيفًا حول بعض 
المحاور ، فسيكون لديها بعض من 
كمّية الحركة الزاوية ، والتي يجب 
أن تبقى ثابتة ، فكلمّا انكمش الغاز 

قلّ عزمه الدوراني ، ويشبه ذلك 
دوران المتزلجّة على الجليد التي 

تقوم بدفع (طيّ) ذراعيها للداخل ، 
فإنّ كرة الغاز تدور أسرع .

وبالتالي تصبح بالضبط مثل تسطحّ 
أرضنا الدوّارة عند أقطابها . فإذا 
كانت للكرة الكبيرة المستديرة 
كمّية تحرّك زاوي ، فإنهّا تدور 

في سطح أفقي له نصف قطر أكبر 
من سمكها ، ويمكن أن تصبح 

مجرّة حلزونية . إنّ قانون بقاء كمّية 
الحركة الزاوية يثبت صحّته في 

الحياة اليومية لعلماء الفلك .

4-2 ¢SQódG á©LGôe

ًّا تثني ذراعيها  أوّلاً - إذا كانت المتزلجّة على الجليد التي تدور مغزلي

كي تقُلِّل عزم قصورها الذاتي الدوراني إلى النصف ، فبأيّ قدر يزداد 
معدّل دورانها المغزلي؟

ثانيًا - ماذا يحدث لكمّية الحركة الزاوية للاعب الجمباز عندما يغيرّ 

ترتيب جسمه أثناء شقلبته؟ وماذا يحدث لسرعته الزاوية؟
ثالثًا - يقف ولد كتلته m = (45)kg على حافةّ منضدة دوّارة كتلتها 

m' = (200)kg ونصف قطرها m(3) . تدور هذه المنضدة بسرعة 
. (4)rad/s زاوية ثابتة مقدارها

I = mr2 للجسم

I = 1 للقرص
2  m .r2

احُسب السرعة الزاوية للمنضدة الدوّارة حين يقف الولد على بعد 
m(5. 1) من محور المنضدة .

رابعًا - الزمن الدوري للمشتري في دورانه حول المحور الذي يمرّ 

t . ما هو مقدار هذا الزمن الدوري إذا 
i
 = (9 .8)h بمركز كتلته

أصبح قطر المشتري نصف قطره الحالي وكتلته ثلاثة أرباع كتلته 
الحالية ؟ اِعتبِر أنّ حركة المشتري حول الشمس دائرية .

 . I = 25  m .r2 اِستخدم

m

m
W

m

m

(3)m = R = r
i

(شكل 92)

M وطولها L حول أحد أطرافها 
1
خامسًا - تدور عصا رفيعة كتلتها 

العصا  لهذه  الثاني  الطرف  على  نضع   . ω
i
ثابتة  زاوية  بسرعة 

للنظام  النهائية  الزاوية  السرعة  احُسب   . (92 (شكل   m الكتلة 
ثابتة ،  بقيت  الزاوية  الحركة  كمّية  أنّ  علمًا  كتلة) ،  (عصا + 
بأحد  يمرّ  للعصا حول محور  الدوراني  الذاتي  القصور  أنّ  و 

I = 1 وI = mr2 للجسم .
3  m .L2 أطرافها يساوي
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ÊÉãdG π°üØdG á©LGôe

º«gÉØªdG

بقاء كمّية الحركة الزاوية
 Conservation of

Angular Momentum
Angular Accelerationالعجلة الزاوية

الحركة الدائرية 
المنتظمة العجلة

 Uniform Varied

Circular Motion
Rotational Workالشغل الدوراني

الطاقة الحركية الدورانية 
 Rotational Kinetic

Energy
Moment (Torque)العزم

Opposite Momentالعزم المضادTorque of a Coupleّعزم الازدواج

Newton's Third Lawالقانون الثالث لنيوتنNewton's First Lawالقانون الأوّل لنيوتن

Rotational Powerالقدرة الدورانيةNewton's Second Lawالقانون الثاني لنيوتن

Angular Momentumكميةّ الحركة الزاويةRotational Inertiaالقصور الذاتي الدوراني

π°üØdG »a á°ù«FôdG QÉμaC’G

  τ = F .d .sin :يقيس عزم القوّة مقدرة القوة على إحداث حركة دورانية للجسم ويحُسَب بواسطة المعادلة
.N .m هي τ هي الزاوية بين القوّة وذراعها ، وتكون وَحدة θ هو ذراع القوّة و d حيث θ

يكون جسم ما في اتزّان دوراني إذا كان حاصل جمع العزوم المؤثرّة فيه يساوي صفرًا . 
العزم كمّيةً متجَّهة ، تنطبق على محور الدوران . 
يكون العزم موجباً إذا كان الدوران عكس عقارب الساعة وسالباً إذا كان الدوران باتجّاه عقارب الساعة . 
يكون مقدار العزم قيمته العظمى عندما تكون القوّة متعامدة مع ذراعها . 
يدلّ القصور الذاتي الدوراني على ممانعة الجسم لتغيرّ حركته الدورانية . 
لكلّ جسم قصور ذاتي دوراني يتأثرّ بشكله وبموقع كتلته من محور دورانه . 
  I = I

0
 + m .d2 بواسطة المعادلة Δ يمكن حساب القصور الذاتي الدوراني بالنسبة لأيّ محور دوران

I هو القصور الذاتي الدوراني حول محور دوران يمرّ بمركز ثقل الجسم وموازٍ للمحور Δ ، كتلة 
GC

حيث 
الجسم m وd هي المسافة بين Δ والمحور الموازي له المارّ بمركز الثقل .

 . kg .m2 وَحدة القصور الذاتي الدوراني
يتغيرّ القصور الذاتي الدوراني بتغيرّ توزيع الكتلة حول محور الدوران ، هذا ما يسمح للاعبي رياضة  

الجمباز بتغيير معدّل دوارنهم وفي المحافظة على توزانهم .
تسُتخدَم القوانين الثلاثة لنيوتن لوصف الحركة الدورانيةّ فيحلّ العزم مكان القوّة ، والعجلة الزاوية مكان  

العجلة الخطيّة ، والإزاحة الزاوية مكان الإزاحة الخطيّة والسرعة الزاوية مكان السرعة الخطية .
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 ينصّ القانون الثاني لنيوتن للحركة الدائرية على أنّ:  
 Στ

i
 = I .θ"

 W = τ .θ ويحُسَب الشغل في الحالة نفسها بـ KE
c
 = 12 I .ω2 تحُسَب الطاقة الحركية للحركة الدائرية 

P = τ .ω والقدرة
ف كمّية الحركة الزاوية بحاصل ضرب القصور الذاتي الدوراني بالسرعة الزاوية L = I . ω وتكون   تعُرَّ

. kg .m2/s وَحدتها
كمّية الحركة الزواية هي كمّية متجَّهة ينطبق على محور الدوران . 
تبقى كمّية الحركة الزواية ثابتة إذا كان حاصل جمع العزوم صفرًا . 
عند ثبات كمّية الحركة الزاوية: ثابت = L = I .ω ، يؤديّ تغيُّر القصور الذاتي إلى تغيُّر سرعة الدوران مع  

بقاء محور الدوران ثابتاً . 

 ä’OÉ©e

المعادلات التي تصف موقع الجسم الدائري وسرعته وعجلته هي كالتالي:
إذا كان حاصل جمع عزوم القوى يساوي صفرًا .

θ" = 0
ω = ثابت

 θ = ωt
إذا كان حاصل جمع عزوم القوى ثابتاً .

θ" = ثابت
ω = θ" .t + ω

0

 θ = 12 θ" .t2 + ω
0
 .t

 ω2 = ω
0
2
 
+ 2 θ" θ

π°üØdG º«gÉØe á£jôN

اِستخدم المصطلحات الموضّحة في الشكل التالي لرسم خريطة مفاهيم تنُظِّم معظم الأفكار التي احتواها الفصل .

القانون الأوّل لنيوتن

القانون الثالث لنيوتن القانون الثاني لنيوتن

كمّية الحركة الزاوية

القصور الذاتي الدوراني

العزم المضادّ

العجلة الزاوية

العزم
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 ضع علامة (P) في المربعّ الواقع أمام الإجابة الأنسب في كلّ مماّ يلي:
يكون عزم قوّة ثابتة مساوياً للصفر عندما:. 1

 تتغيرّ السرعة الزواية مع الوقت .
 تكون القوّة متعامدة مع ذراعها .
 يكون اتجّاه القوّة موازٍ لذراعها .

 تكون العجلة الزاوية لا تساوي صفرًا .
اِختر العبارة الخاطئة:. 2

 تكون الحركة الدائرية منتظمة إذا كانت العجلة المماسية صفرًا .
 تكون الحركة الدائرية منتظمة إذا كان حاصل جمع القوى المؤثرّة في الجسم صفرًا .

 تكون الحركة الدائرية منتظمة إذا كان حاصل جمع العزوم صفرًا .
 تكون الحركة الدائرية منتظمة إذا كانت السرعة الزاوية ثابتة .

حول أيّ من المحاور المبنية في الرسم سيكون حاصل جمع العزوم صفرًا؟. 3
A 

(30)kg C A B D
(90)kg

 B 
C 
D 

يدور إلكترون حول نواة ذرّة الهيدروجين على مسار دائري بسرعة مماسّية ثابتة مقدارها  . 4
. (2200)km/s

 (1 .6 ^ 10-19)C (31-10 ^ 11. 9) وشحنتهkg  ما هو نصف قطر المسار علمًا أنّ كتلة الإلكترون هي
1

4πε
0

 = (9 .109)N . m2

C2 و 

(5 .22 ^ 10-11)m 
(5 .22 ^ 10-5)m 

(11 ^ 10-6)m 
(11 ^ 10-5)m 

∂JÉeƒ∏©e øe ≥≤ëJ

أجب عن الأسئلة التالية:

في أيّ مكان يجب أن ترُكَل كرة القدم لتنطلق خلال الهواء من دون أن تنقلب من جانب إلى . 1
آخر ؟

عندما تتأرجح ساقك من مفصل الفخذ لماذا يقلّ عزم القصور الذاتي الدوراني عند ثنيها؟. 2
كيف يمكن مقارنة عزم الدوران مع اتجّاه عقارب الساعة وعكس اتجّاه عقارب الساعة في . 3

النظام المتزّن .
ر لماذا لا تستطيع ، عندما تكون ملاصقًا للحائط ، أن تميل لتلمس أصابع قدميك من دون أن . 4 فسِّ

تنقلب . اِعتمد في تفسيرك على المصطلحات التالية: مركز الثقل ، المساحة الحاملة ، العزوم .
ما هما الكمّيتان اللتان تؤثرّان في القصور الذاتي الدوراني؟. 5
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حلّ المسائل التالية:

كتلتان لهما القصور الذاتي الدوراني نفسه I = (4 ^ 10-3)kg .m2 تدوران حول محور،. 1
تدور الأولى بسرعة زاوية تساوي rad/s(5) بالاتجّاه الموجب ، بينما تدور الثانية بالاتجّاه 

المعاكس بسرعة زاوية تساوي rad/s(8) . احُسب:
(أ) كمّية الحركة الزاوية لكل من الكتلتين .

(ب) كمّية الحركة الزاوية للنظام .
(أ) احُسب كمّية الحركة الزاوية لكرة من الحديد كتلتها kg(5) تتأرجح في دائرة أفقياً بسرعة . 2

. (4)m (3) عند نهاية حبل طولهm/s
(ب) ما مقدار كمّية الحركة الزاوية عند مضاعفة كلّ من السرعة وطول الخيط ؟

عند دوران كرة من الغاز في الفضاء ، تنكمش بسبب الجاذبية . احُسب السرعة الزاوية لكرة الغاز . 3
. 1
عندما تنكمش لتقللّ قصورها الذاتي الدوراني إلى العِشر 10

(أ) احُسب عزم قوّة الدوران الناتج عن تأثير قوّة عمودية مقدارها N(50) عند نهاية مفتاح ربط . 4
. (0 .2)m طوله

(ب) احُسب عزم قوّة الدوران الناتج عن القوّة N(50) نفسها عند وصل أنبوبة بمفتاح الربط 
. (0 .5)m بحيث يصبح الطول

يعُلَّق وعاء للزهور كتلته kg(60) بحبل عديم الكتلة ، ثمّ يمرّ هذا الحبل في تجويف لبكرة قطرها . 5
ح في الشكل التالي:  m(60. 0) كما هو موضَّ

احُسب العزم الناتج عن وزن الوعاء بالنسبة إلى محور البكرة .
6 .، (50)N .m تخضع أسطوانة إلى حاصل جمع عزوم مقداره

فتدور حول مركز ثقلها وتتغيرّ إزاحتها الزاوية من صفر إلى rad(100) في خلال s(2) ، وتقف بعد 
. (80)s هذا الوقت هذه الأسطوانة بفعل عزم قوّة الاحتكاك فقط فتستغرق عودتها إلى السكون

(أ) احُسب القصور الذاتي الدوراني لهذه الأسطوانة .  
(ب) احُسب مقدار عزم قوى الاحتكاك .

(60)kg

(0.60)m

(شكل 93)
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اكُتب مقالاً تشرح فيه كيف يسُتخدَم الجيروسكوب في الطائرات .. 1
اكُتب مقالاً تقُارِن فيه الكتلة والقصور الذاتي الدوراني .. 2

»ãëH •É°ûf

سعى الإنسان قديمًا إلى إيجاد آلات تسُاعِده على القيام بأعماله بشكل أسهل ، فاكتشف الآلات 
البسيطة واستخدمها .

تسهّل الآلات حياة الإنسان وتسُاعِده على القيام بأعمال عديدة . أجرِ بحثاً تظُهِر فيه أنواع الآلات 
البسيطة وأهمّية الحركة الدائرية في عملها .

أجرِ بحثاً تظُهِر فيه أنواع تلك الآلات البسيطة ، ودور الحركة الدورانية في عمل تلك الآلات .
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الدرس الأوّل
كمّية الحركة والدفع 

الدرس الثاني
حفظ (بقاء) كمّية الحركة  

والتصادمات

إنّ كمّية الحركة هي مفتاح نجاح العديد من الألعاب الرياضية منها لعبة 
البيسبول ، وكرة القدم ، ولعبة الهوكي على الجليد والتِنس . يحلم كلّ 

ا . في الواقع ، خلال تصادم  لاعب بيسبول بضرب الكرة لمسافة طويلة جدًّ
الكرة بالمضرب يحدث تغيُّر في سرعة كلّ منهما وبالتالي تغيُّر في كمّية 

الحركة . يحدّد هذا التغيُّر نجاح الضربة وسرعة انطلاقها من جديد .

á«£ÿG ácô◊G á« qªc

Linear Momentum
ådÉãdG π°üØdG
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Momentum and Impulse
1-3 ¢SQódG

áeÉ©dG ±GógC’G

يعرّف كمّية الحركة . 
 . I يعرّف الدفع
يستنتج العلاقة بين الدفع والتغيرّ في كمّية الحركة . 
يستخدم قانون الدفع وكمّية الحركة في حلّ التطبيقات العددية وتفسير الظواهر أو المشاهدات الحياتية . 
يستنتج القانون الثاني لنيوتن بدلالة التغيرّ في كمّية الحركة . 

(شكل 94)

هل تساءلت يومًا كيف يستطيع لاعب الكاراتيه أن يكسر مجموعة 
من الألواح الخشبية بضربة بحرف يده؟ (شكل 94) أو تساءلت لماذا 
السقوط على أرض خشبية أقلّ ألمًا من السقوط على أرض إسمنتية؟

لكي نفهم هذه الأمور ، علينا تذكّر مفهوم القصور الذاتي الذي درسناه 
عندما ناقشنا قوانين نيوتن للحركة بحالتيه: القصور الذاتي بالنسبة إلى 

جسم ساكن ، والقصور الذاتي بالنسبة إلى جسم متحرّك . وسنهتمّ في هذا 
الدرس بمفهوم القصور الذاتي أثناء حركة الجسم الخطيّة وهذا ما سنعرّفه 

بكمّية الحركة الخطيّة . ولكن بما أنّ هذا الدرس لن يتناول إلاّ الحركة 
الخطيّة ، لذا سنستخدم مفهوم كمّية الحركة الخطيّة ، على أن نتناول 

كمّية الحركة الدورانية في فصول لاحقة .
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(شكل 95)
السيارة والشاحنة تتحرّكان بالسرعة نفسها 
ولكن كميّة حرّكة الشاحنة أكبر لأنّ كتلتها 

أكبر .

v

P

m

(شكل 96)
لكميّة الحركة اتجّاه السرعة نفسه .

1 .Momentum  ácô◊G á« qªc
من المعروف أنّ إيقاف شاحنة كبيرة أصعب من إيقاف سياّرة صغيرة 

تسير بنفس السرعة ، وهذا لأنّ القصور الذاتي للشاحنة المتحرّكة (بسبب 
كتلتها الكبيرة) أكبر من القصور الذاتي للسياّرة المتحرّكة بنفس السرعة . 

وهذا يعني أنّ كمّية حركة الشاحنة أكبر من كمّية حركة السياّرة على 
الرغم من تساوي سرعتيهما (شكل 95) .

ولكن لو أخذنا سياّرتين لهما الكتلة نفسها وتسيران بسرعتين مختلِفتين ، 
أيّ منهما سيكون إيقافها أسهل؟

من المؤكّد أنّ إيقاف السياّرة الأبطأ سيكون أسهل من إيقاف السياّرة 
الأسرع . وهذا يعني أنّ للسرعة تأثير في كمّية الحركة . نلاحظ من هذه 

الأمثلة أنّ كمّية الحركة تتوقفّ على كتلة الجسم المتحرّك وسرعته .
نعرّف كميّة الحركة Momentum على أنهّا القصور الذاتي للجسم المتحرّك 

أو بشكل أكثر دقةّ نقول إنّ كميّة الحركة هي حاصل ضرب الكتلة ومتجّه السرعة 
وتمُثَّل بالعلاقة الرياضية التالية: كمّية الحركة = الكتلة ^ متجّه السرعة
 . kg.m/s تقُاس كمّية الحركة بحسب النظام الدولي للوَحدات بوَحدة

ونظرًا لأنّ متجّه السرعة كمّية متجَّهة فإنّ كمّية الحركة للكتلة m تكون 
كمّية متجَّهة أيضًا ، ولها نفس اتجّاه السرعة (شكل 96) ويمكن أن نمثلّها 

بالعلاقة التالية:
P  = m. v

أي أنّ كمّية الحركة المتجَّهة الخطيّة هي حاصل ضرب الكتلة والسرعة 
المتجَّهة للكتلة .

أماّ بالنسبة إلى نظام مؤلفّ من مجموعة كتل نقطية فإنّ كمّية الحركة 
للنظام تساوي حاصل جمع المتجَّهات لكمّية الحركة لكلّ كتلة نقطية:

P
system

 = ∑ P  = P
1
 + P

2
 + P

3
 + . . . + P

n

تذكير بجمع المتجّهات: 
P لهما الاتجّاه نفسه تساوي في المقدار . 1

2
P و 

1
محصّلة متجّهين 

حاصل جمعهما ولها نفس اتجّاههما: 
P = P

1
 + P

2

P متعاكسين بالاتجّاه تساوي في المقدار . 2
2
P و 

1
محصّلة متجّهين 

طرح المتجّه الصغير من مقدار المتجّه الكبير واتجّاهها يكون باتجّاه 
:(P

1
 > P

2
المتجّه الأكبر (

P = P
1
 - P

2

P متعامدين تساوي في المقدار طول وتر . 3
2
P و 

1
محصّلة متجّهين 

. P
1
المستطيل المتكوّن من المتجّهين ويصنع زاوية α مع المتجّه 

P = P
1
2 + P

2
2

tan α = 
P

2

P
1
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وحدات  من  واحدة  وحدة  يساوي  مقدار  له  متجّه  هو   Unit Vector الوحدة  متجّه 
القياس ويرُمزَ له باستخدام حرف مع إشارة المتجّه عليه ويسُتخدَم ليشير إلى الاتجّاه في 

الفضاء .
في الأنظمة الكارتيزية هناك ثلاثة متجّهات وحدة لمحاور الإسناد  

i ، ومتجّه  الثلاثة: فمتجّه الوحدة على محور الإسناد x’x هو المتجّه 
j ومتجّه الوحدة على  الوحدة على محور الإسناد y’y هو المتجّه 

. k هو المتجّه z’z محور الإسناد

إنّ الضرب النقطي لمتجّهَين متعامدَين يساوي صفرًا أي أنّ:

 j .k = 0 و i .k = 0 و i . j  = 0

بينما الضرب النقطي لمتجّه الوحدة بنفسه يساوي 1 أي أنّ:
 i .i = j . j  = k.k =1 

أماّ متجّه الوحدة u لأي متجّه v فهو يساوي المتجّه مقسومًا على  
 v
v  = u :مقداره أي

(1) ∫Éãe

. A
3
 ،A

2
 ،A

1
P3 ،P2 ،P1 في الشكل (97) تمثلّ متجَّهات كمّية الحركة للكتل النقطية الثلاث 

P
3 = (4) j  ، P2 = (-8) i  ، P1 = (5) i علمًا أنّ: 

احُسب كمّية الحركة المتجَّهة للنظام .
طريقة التفكير في الحلّ

حلِّل: اذُكر المعلوم وغير المعلوم .. 1

(شكل 97)

P
1

P
3

P
2

O

y

x
 P1 = (5) i المعلوم:  

P
2 = (-8) i  

P
3 = (4) j  

غير المعلوم:
كمّية الحركة للنظام المؤلفّ من ثلاث كتل .

احُسب غير المعلوم .. 2

تساوي كمّية الحركة للنظام حاصل جمع متجَّهات كلّ كتلة:
 P = P1 + P2 + P3

بالتعويض عن المقادير المعلومة ، نحصل على:
P = 5i - 8i + 4 j

= -3i + 4 j

قيِّم: هل النتيجة مقبولة؟. 3
كمّية الحركة للنظام المؤلفّ من الكتل الثلاث منطقية من حيث المقدار والاتجّاه ، وتتناسب مع 

ًّا باستخدام مقياس رسم مناسب . معطيات المسألة . ويمكن التحقّق منها بتمثيلها بياني
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(شكل 98)
العلاقة البيانية بين القوّة المؤثرّة في الكرة وزمن 

تأثيرها
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(شكل 99)
يمثلّ الدفع عدديًّا مساحة المستطيل .

2 .ácô◊G á« qªc qÒ¨j ™aódG
Impulse Changes Momentum

عرفنا سابقًا أنّ كمّية الحركة ترتبط بكتلة الجسم وسرعته المتجَّهة ، 
وبالتالي فإن تغيرّ كمّية الحركة لجسم ما يعني تغيرّ كتلته أو سرعته 

المتجَّهة أو الاثنين معًا .
ولكن غالباً ما تكون كتلة الجسم ثابتة لا تتغيرّ كما في جميع الحالات 

التي سنتناولها ، أي أنّ السرعة المتجَّهة هي التي تتغيرّ . وكما هو 
معروف ، فإن التغيرّ في السرعة المتجَّهة يعني حدوث عجلة للحركة . 

وهذا يعني بدوره وجود قوّة تؤثرّ في الجسم وتغيرّ كمّية الحركة .
وكلمّا كان تأثير القوّة أكبر في الجسم ، يعني ذلك وجود تغيرّ أكبر في 

السرعة وبالتالي تغيرّ أكبر في كمّية الحركة .
وللفترة الزمنية التي تؤثرّ فيها القوّة في الجسم المتحرّك تأثير في كمّية 

حركته . فكلمّا كانت مدّة تأثير القوّة في الجسم أطول كلمّا كان التغيرّ 
في كمّية الحركة أكبر .

وعليه ، نستنتج أنّ القوّة والزمن عاملان ضرورياّن لإحداث تغيرّ في كمّية 
الحركة .

 Impulse حاصل ضرب مقدار القوّة في زمن تأثيرها على الجسم يسُمىّ مقدار الدفع
أو (دفع القوّة) ويمُثَّل بالحرف اللاتيني I ويحُسَب بالمعادلة الرياضية التالية:

I  = F . Δt

الدفع كمّية متجَّهة لها اتجّاه القوّة المؤثرّة ، ويقاس الدفع بحسب النظام 
.(N.s) الدولي للوحدات بوحدة

القوّة المؤثرّة F في المعادلة هي قوّة متغيرّة خلال فترة تأثيرهاكما هو 
الحال في كرة القدم التي تتلقى الدفع من قدم اللاعب حيث تزداد القوة 

من صفر في لحظة تماس القدم بالكرة إلى قيمة عظمى ثم تتناقص إلى 
ح منحنى   أن تتلاشى في لحظة انفصال الكرة عن قدم اللاعب ، كما يوضِّ

(القوّة - الزمن) في الرسم البياني (شكل 98) . وتمثلّ المساحة تحت 
. I ًّا مقدار دفع القوّة المنحنى عددي

F وهي القوّة الثابتة التي لو أثرّت في  ويعُرَف ، في هذه الحالة بأنهّ متوسّط القوّة 
الجسم للفترة الزمنية نفسها لأحدثت الدفع نفسه الذي تحُدِثه القوّة المتغيرّة ، وبهذا 

ًّا  تصبح مساحة المستطيل تحت منحنى متوسّط (القوّة - الزمن) تمثلّ عددي
الدفع (شكل 99) ، وعليه تصبح القوّة F في معادلة قوّة الدفع تمثلّ متوسّط 

القوّة .
ملاحظة: السؤال في سياق الدرس عن القوّة المسبِّبة للدفع يقُصَد به دائما 

متوسّط القوّة وليس القوّة المتغيرّة .
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É«LƒdƒæμàdGh AÉjõ«ØdG

الدفع ووسائل الأمان

يوجد داخل السياّرات الحديثة 
 Air) ما يسُمّى بالحقيبة الهوائية

Bag). توجد داخل عجلة القيادة 
ًّا عند  أمام قائد السياّرة، تفُتح آلي
اصطدام السياّرة بشيء، وبالتالي 

يقلّ تأثير الاصطدام على قائد 
السياّرة. وتقوم الحقيبة الهوائية 

بزيادة زمن التلامس، وبالتالي يقلّ 
تأثير القوّة، ومن ثم يقلّ احتمال 

إصابة قائد السياّرة بأذًى.

نلاحظ من خلال مشاهداتنا اليومية أنهّ كلمّا كان مقدار الدفع على جسم 
معينّ أكبر ، كان التغيرّ في كمّية الحركة أكبر ، أي أنّ:
I  = ΔP  ⇒  I  = (P

f
 – P

i
)

وعليه ، نستنتج أنّ مقدار الدفع على جسم في مدّة زمنية ما تساوي التغيرّ 
في كمّية حركة الجسم في الفترة الزمنية نفسها .

قانون الدفع وكميّة الحركة:
إذا أخذنا المعادلتين السابقتين:

I  = ΔP
I  = F .Δt

يمكننا أن نستنتج قانون الدفع والتغيرّ في كمّية الحركة الذي يكُتبَ على 
الشكل التالي:

ΔP = F.Δt
Δ(m.v) = F.Δt

 F = ΔP
Δt

يساعدنا هذا القانون على التحقّق من الدور الذي يؤديّه زمن تغيرّكمّية 
الحركة بفعل مقدار القوّة المؤثرّة في مدى تأثير هذه القوة (شكل 100) .

قشّ(أ)

(ب)

⇒

⇒

حائط إسمنتي

(شكل 100)
F أقلّ (أ) . بينما إذا حدث التغيرّ  إن حدث التغيرّ لكميّة الحركة في فترة زمنية أطول يكون تأثير قوّة الدفع 

F أكبر (ب) . في كميّة الحركة في فترة زمنية قصيرة ، يكون تأثير القوّة 

95



3 .øJƒ«æd ÊÉãdG ¿ƒfÉ≤dG
Newton's Second Law

تعلمّنا سابقًا أنّ القانون الثاني لنيوتن يتمثلّ بالمعادلة التالية:

∑F  = m. a  

a = Δv
Δt وأنّ العجلة تساوي: 

بالتعويض عن مقدار العجلة في معادلة نيوتن نحصل على شكل جديد 
لمعادلة نيوتن:

∑F = 
m.Δv

Δt  = 
Δ(m.v)

Δt  = 
ΔP
Δt

وتعطينا إعادة صياغة هذه المعادلة من جديد معادلة قانون الدفع وكمّية 
الحركة التي توصّلنا إليها سابقًا ، ما يؤُكِّد صحّة الشكل الجديد لمعادلة 

قانون نيوتن:
F .Δt = ΔP

ا وتؤول إلى صفر Δt = 0 فيكُتبَ  أماّ إذا كانت الفترة الزمنية صغيرة جدًّ
القانون الثاني لنيوتن كما يلي:

∑F = dP
dt

وعليه ، نستنتج أنّ مشتقّ كمّية الحركة بالنسبة إلى الزمن يساوي محصّلة 
القوى الخارجية المؤثرّة في النظام .

(2) ∫Éãe

. x (10) في الاتجّاه الموجب لمحورm/s (1) تتحرّك بسرعة منتظمة مقدارهاkg كتلة نقطية مقدارها
أثرّت قوّة منتظمة على الكتلة النقطية لمدّة s(4) ، فخفّضت مقدار السرعة إلى m/s(2) من دون أن تغيرّ 

اتجّاهها .
(أ) ما هو مقدار كمّية الحركة للكتلة قبل تأثير القوّة وبعده؟

(ب) احُسب مقدار الدفع على الكتلة .
(جـ) ما هو مقدار القوّة F المؤثرّة في الجسم واتجّاهها؟

طريقة التفكير في الحلّ
حلِّل: اذُكر المعلوم وغير المعلوم .. 1

m= (1)kg المعلوم: الكتلة
v

i
= (10)m/s :السرعة الابتدائية  
v

f
= (2)m/s :السرعة النهائية  

Δt = (4)s :الزمن  
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(™HÉJ) (2) ∫Éãe

P
f
غير المعلوم: (أ) كمّية الحركة الابتدائية ? = Pi وكمّية الحركة النهائية ? = 

I (ب) الدفع: ? =   
F = ? :(جـ) القوّة المؤثرّة  

احُسب غير المعلوم .. 2

(أ) كمّية الحركة هي كمّية متجَّهة ويمكن حسابها باستخدام المعادلة التالية:

P = m.v

كمّية الحركة الابتدائية تساوي:

P
i = m.v  = 1(10 i ) = (10 i )kg.m/s

كمّية الحركة الخطية النهائية تساوي:

 P
f
 = m.v

f
 = 1(2i) = (2i)kg.m/s

(ب) باستخدام المعادلة الرياضية بين الدفع والتغيرّ في كمّية الحركة:
I= ΔP = m(vf

 - v i
)

وبالتعويض عن المقادير المعلومة ، نحصل على:
I  = 1(2 - 10)i  = (-8i )N.s

 . (8)N.s وتدلّ الإشارة السالبة على أنّ اتجّاه الدفع معاكس لاتجّاه الحركة ، ويساوي مقدار الدفع

(جـ) حيث إنّ الدفع يساوي حاصل ضرب القوّة والفترة الزمنية لتأثير القوّة في الجسم ، وباستخدام 
المعادلة الرياضية التالية: 

I  = F.Δt
وبالتعويض عن المقادير المعلومة ، نحصل على:

F =  I
Δt

F = -8i أماّ اتجاهها فهو معاكس لاتجّاه الحركة . 
4  = (-2i )N مقدار القوّة المؤثرّة يساوي

قيِّم: هل النتيجة مقبولة؟. 3

التغيرّ في كمّية الحركة يساوي مقدار الدفع ولهما الاتجّاه نفسه ، والنتيجة منطقية وتتلاءم مع المقادير 

المعطاة في المسألة .
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v
1
 = 6.5m/s

v
2
 = 3.5m/s

الأرض

(شكل 101)

1-3 ¢SQódG á©LGôe

. m ف كمّية الحركة لكتلة نقطية كتلتها أوّلاً - عرِّ

ف الدفع على كتلة نقطية . ثانيًا - عرِّ

ثالثًا - اِستخدم معادلة القانون الثاني لنيوتن  F= m.a∑ لتستنتج 

معادلة تربط بين:
(أ) القوّة وكمّية الحركة .

(ب) الدفع وكمّية الحركة .
 (100)N (100) تعرّض إلى قوّة مقدارهاg رابعًا - جسم ساكن كتلته

. (0.01)s لفترة زمنية مقدارها
(أ) احُسب التغيرّ في كمّية الحركة .

(ب) احُسب سرعته النهائية .
خامسًا - أثرّت قوّة مقدارها N(30000) لمدّة s(4) في كتلة كبيرة 

مقدارها kg(950) . احُسب كلاًّ ممّا يلي:
(أ) مقدار الدفع على الكتلة .

(ب) التغيرّ في مقدار كمّية الحركة .
(جـ) التغيرّ في مقدار متجَّه السرعة .

سادسًا - كرة كتلتها kg(0.15) ، إذا كانت سرعتها لحظة اصطدامها 

 (3.5)m/s (6.5) وسرعة ارتدادها تساويm/s بالأرض تساوي
(شكل 101) ، احُسب مقدار واتجّاه القوّة المؤثرّة في الأرض نتيجة 

. (0.025)s ّهذا الاصطدام إذا استمر
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Conservation of Momentum and Collisions
2-3 ¢SQódG

áeÉ©dG ±GógC’G

يستنتج قانون حفظ (بقاء) كمّية الحركة . 
يذكر قانون حفظ (بقاء) كمّية الحركة . 
يفسّر بعض المشاهدات اعتمادًا على قانون حفظ (بقاء) كمّية الحركة . 
يطبقّ قانون حفظ (بقاء) كمّية الحركة في حلّ مسائل عددية . 
يعرّف التصادم . 
يميزّ بين أنواع التصادم . 
يحسب سرعة الأجسام الخطيّة بعد تصادمها بالنسبة إلى سرعتها الابتدائية . 

كرة ساكنة

m
1

v
1

v
2

m
1

m
1

m
2

m
2

m
2

قبل التصادم أثناء التصادم بعد التصادم

(شكل 102)
كرة بلياردو تصطدم بكرة ساكنة

تعرّفنا في الدرس السابق كمّية حركة جسم واحد ، ولاحظنا أهمّية هذا المفهوم 
في تفسير تغيرّ حركة الأجسام وفي حساب القوّة المسبِّبة لهذا التغيرّ . ولاحظنا 
أهمّية هذا المفهوم في تطوير القانون الثاني لنيوتن ليكون أكثر شمولية وليظهر 
ارتباط مفهوم الدفع بكمّية الحركة في قانون كمّية الحركة والدفع . أماّ في هذا 
الدرس ، فسنتعرّف على كمّية حركة جسمين أو أكثر يتفاعلان فيما بينهما . 
فالشكل (102) يظهر كرة بلياردو ساكنة على سطح الطاولة الأملس وكرة 

متحرّكة مشابهة لها تتحرّك نحوها لتصطدم بها . 
من المؤكّد أنّ كمّية حركة كلّ من الكرتين تختلف بعد الاصطدام ، 

فالكرة التي كانت ساكنة قبل الاصطدام ستتحرّك، أي تزيد كمّية حركتها . 
أماّ الكرة المتحرّكة فمن المحتمل أن تكون سرعتها قد انخفضت وبالتالي 

نقصت كمّية حركتها . يدفعنا التفكير في هذا الاصطدام بين الكرتين إلى 
طرح أسئلة كثيرة حول نتائجه ومنها:

هل كمّية الحركة التي اكتسبتها الكرة الأولى التي كانت ساكنة قبل 
الاصطدام تساوي في المقدار كمّية الحركة التي خسرتها الكرة الثانية 
المتحرّكة؟ هل كمّية الحركة محفوظة؟ هل ستتوقفّ الكرة الثانية بعد 

الاصطدام أم ستتابع حركتها في الاتجّاه نفسه؟
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(شكل 103)
قوى التفاعل بين جزيئات الغاز داخل الكرة لا 

تحدث تغييرًا في كميّة الحركة للكرة .

•É°ûf

الزلاّجة وكميّة الحركة

حاوِل أن تقف على زلاّجة في . 1
حالة سكون واحمِل جسمًا له 

كتلة ما.
اقذف بالجسم إلى الأمام أو . 2

إلى الخلف.
يلاُحَظ أنكّ سوف ترتدّ في . 3

اتجّاه معاكس لاتجّاه قذفك 
للجسم. بالطبع تكون كمّية 

حركة الجسم المقذوف 
متساوية مع كمّية حركة 

لة  الارتداد، وبالتالي فإنّ محصَّ
تغيرّ كمّية الحركة تساوي 

صفرًا، ومن ثمّ يقُال إنّ 
هناك بقاءً (حفظاً) على كمّية 

الحركة لهذا النظام.
ر المحاولة السابقة . 4 الآن كرِّ

وبالجسم نفسه، ولكن وأنت 
تتحرّك بالزلاّجة . هل يحدث 

ر ما يحدث. لك ارتداد؟ فسِّ

ًّا؟ هل لكتلة  هل نستطيع أن نتحقّق من مقادير التغيرّ في كمّية الحركة عملي
الكرتين تأثير في تغيرّ مقدار كمّية الحركة؟ هل نستطيع معرفة سرعة 

الكرتين بعد التصادم؟ هل لزاوية التصادم بين الكرتين أهمّية في تحديد 
اتجّاه حركة الكرة ومقدار سرعتها بعد التصادم؟

الإجابة عن تلك التساؤلات وغيرها ممّا يدور حول تغيرّ الكمّيات 
الفيزيائية مثل كمّية الحركة والسرعة في أنواع مختلِفة من التصادمات هي 

محور هذا الدرس .

1 .ácô◊G á« qªc (AÉ≤H) ßØM
Conservation of Momentum

تعلمّنا من القانون الثاني لنيوتن أنّ تعجيل حركة الجسم يتطلبّ وجود 
محصّلة قوى خارجية تؤثرّ فيه . وتناولنا الموضوع نفسه في الدرس 

السابق ولكن بطريقة مختلِفة، عندما استنتجنا أنهّ لإحداث تغيير في كمّية 
حركة الجسم ، يجب أن يكون هناك دفع يؤثرّ فيه . ونجد في الحالتين 

أنّ الدفع أو القوّة يبُذَلان من شيء ما خارج الجسم . فالقوى الداخلية لا 
تحُدث شغلاً . على سبيل المثال ، قوى التفاعل بين الجزيئات الموجودة 

داخل كرة القدم (شكل 103) ليس لها تأثير في تغيير سرعتها وكمّية 
حركتها . وإذا دفعتَ مقعد السيارة الأمامي فيما تجلس على المقعد 

الخلفي لا تحُدث تغييرًا في كمّية حركة السياّرة . فبحسب القانون الثالث 
لنيوتن ، قوى التفاعل بين الجزيئات أو قوّتك المبذولة على مقعد السياّرة 
هي قوى داخلية تتواجد على شكل زوج من القوى المتزّنة يلُغى تأثيرها 

داخل الجسم ولا تستطيع أن تغيرّ كمّية حركة السياّرة .
وعليه نلخّص: لا يحدث تغيرّ في كميّة الحركة إلاّ في وجود قوّة خارجية مؤثرّة في 

الجسم أو النظام .
ونسمّي النظام حيث تكون محصّلة القوى الخارجية المؤثرّة فيه مساوية 

للصفر نظامًا معزولاً .
∑Fext

 = 0

وبكتابة القانون الثاني لنيوتن لنظام معزول:

∑Fext
 = dp

dt  = 0

dp أي أنّ كمّية الحركة P هي كمّية محفوظة .
dt وبالتالي 0 = 

وكما نعلم في الفيزياء ، تعُدُّ أيّ كمّية فيزيائية لا تتغيرّ مع الزمن كمّية 
محفوظة .وكمّية الحركة محفوظة عندما لا تؤثرّ في النظام أيّ قوّة 

خارجية ، وتعُتبرَ هذه الفكرة من قوانين الفيزياء الرئيسية وتعُرَف بقانون 
حفظ (بقاء) كمّية الحركة .
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ÒμØà∏d ádCÉ°ùe

خلال انفجار القذيفة في النظام 
مدفع قذيفة ، هل يتغيرّ موضع مركز 

ثقل النظام؟ اِشرح .

R

W

(شكل 104)
تتساوى القوّة التي تؤثرّ في القذيفة ، لدفعها إلى 
الأمام في المقدار ، وتتعاكس في الاتجّاه مع قوّة 

ارتداد المدفع إلى الخلف .

äÉHÉLEG ™e ¿ÉàdCÉ°ùe

1 . (200)g اِنفجر جسم كتلته

وانقسم إلى نصفين متساويين . 

احُسب سرعة الجزء الثاني منه 

إذا كانت سرعة الجزء الأوّل

'v على المحور 
1
= (-0.1)m/s

الأفقي بالاتجّاه السالب .

 v'
2
 = (0.1)m/s :الإجابة

واتجّاهها موجب على المحور 

 x'x

يقف رجل كتلته kg(76) على . 2

. (45)kg لوح خشبي طافي كتلته

إذا خطا بعيدًا عن اللوح الخشبي 

، (2.5)m/s باتجّاه اليابسة بسرعة
كم ستبلغ سرعة اللوح الخشبي؟

v = (-4.2)m/s :الإجابة

ينصّ قانون حفظ (بقاء) كميّة الحركة على أنّ كميةّ حركة النظام ، في غياب القوى 
الخارجية المؤثرّة ، تبقى ثابتة ومنتظمة ولا تتغيرّ .

هناك أنظمة عديدة تتصّف بحفظ (بقاء) كمّية الحركة مثل النشاط 
الإشعاعي للذرّات وتصادم السيارات وانفجار النجوم والتفاعل بين 

جزيئات الغاز داخل الكرة، فالقوى المؤثرّة في هذه الأنظمة لا تحُدِث 
تغييرًا في كمّية الحركة للأنظمة المعزولة .

أماّ عندما تؤثرّ قوى خارجية في حركة نظام معينّ تجعل هذا النظام 
يتصّف بعدم بقاء كمّية الحركة نتيجة تغيرّ في السرعة مقدارًا أو اتجّاهًا 

أو الاثنين معًا . على سبيل المثال ، عندما تؤثرّ قوة الاحتكاك على السيارة 
المتحرّكة بسرعة v في خطّ مستقيم تؤديّ إلى تغيرّ مقدار السرعة ، 

كذلك الأمر في الحركة الدائرية حيث يتغيرّ اتجّاه السرعة وبالتالي يحدث 
تغيرّ في كمّية الحركة في كلتا الحالتين .

2 .Recoil Velocity of the Cannon  ™aóŸG OGóJQG áYöS
يعُدّ ارتداد المدفع عند إطلاق القذيفة أحد تطبيقات حفظ (بقاء) كمّية 

الحركة الكثيرة . ففي النظام المؤلفّ من المدفع والقذيفة (شكل 104) ، 
نجد أنّ النظام قبل الإطلاق ساكن حيث إنّ وزن النظام رأسي إلى الأسفل 

يساوي قوّة ردّ الفعل الرأسية إلى أعلى .
 ∑Fext

 = 0
وبالتالي النظام معزول وكمّية حركة النظام الأوّلية تساوي صفرًا:

P
i = 0

عند لحظة الإطلاق ، ينفجر البارود ويولدّ غازًا يقذف القذيفة خارج ماسورة 
المدفع باتجّاه الأمام ويرتدّ المدفع نحو الخلف . وبحسب القانون الثالث 
لنيوتن ، لكلّ فعل ردّ فعل مساوٍ له في المقدار ومعاكس له في الاتجّاه . 
والقوى التي يمارسها الغاز على القذيفة والمدفع هي قوى داخلية بالنسبة 
إلى النظام (مدفع – قذيفة) . وبالتالي تبقى محصّلة القوى الخارجية المؤثرّة 

تساوي صفرًا والنظام معزولاً ، فتكون كمّية حركة النظام محفوظة .
m1 بسرعة v1 ويرتدّ المدفع 

وبعد لحظة الإطلاق ، تنطلق القذيفة وكتلتها 
v وتمُثَّل كمّية حركة النظام النهائية ، 

2
m إلى الخلف بسرعة 

2
وكتلتة 

بإهمال كمّية حركة الغاز الناتج عن الانفجار بالنسبة إلى القذيفة ، 
بالمعادلة التالية:

  ΔP = 0 ⇒ Pi = Pf

   m
1v1

 + m
2
v

2
 = m

1
v

1
’  + m

2
v

2
’

m
1v'

1
 + m

2
v'

2
 = 0  ,  v'

1= - 
m

2
m

1
 v'

2

v2 متعاكستان في الاتجّاه .
v1 و’

’ تظُهِر المعادلة أنّ السرعتين 
يمكن دراسة ارتداد البندقية أو أيّ سلاح عسكري آخر بالطريقة نفسها .
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(1) ∫Éãe

m مربوطتان بخيط من النايلون وتضغطان 
2
 = (2)kg و m

1
 = (1)kg كتلتان نقطيتان مقدارهما على التوالي

زنبركًا بينهما ، وموضوعتان على سطح أفقي أملس عديم الاحتكاك . عند حرق الخيط، يتحرّر الزنبرك ويدفع 
 m

2
’v على المحور الأفقي (x’x) بالاتجّاه الموجب ، بينما تتحرّك 

1
= (1.8)m/s بسرعة m

1
الكتلتين فتتحرّك 

بسرعة متجَّهة v’2 (شكل 105) .
(أ) هل كمّية حركة النظام محفوظة؟ علِّل إجابتك .

m (مقدار واتجّاه) .
2
(ب) احُسب السرعة المتجَّهة v’2 للكتلة 

طريقة التفكير في الحلّ
حلِّل: اذُكر المعلوم وغير المعلوم .. 1

m
2
 = (2)kg و m

1
 = (1)kg :المعلوم

v’
1  = 1.8i  

(شكل 105)
(أ) الكتلتان المربوطتان بخيط تضغطان زنبركًا 

موضوعًا بينهما .
(ب) بعد حرق الخيط يتحرّر الزنبرك ويدفع الكتلتين .

m
2

m
1

m
2

m
1

v'
1

v'
2

(أ)

(ب)

غير المعلوم: (أ) هل كمّية حركة النظام المؤلفّ من الكتلتين محفوظة؟
(ب) مقدار واتجّاه السرعة المتجهة v’2؟  

احُسب غير المعلوم .. 2

قوّة دفع الزنبرك هي قوّة داخلية ، ومحصّلة القوى الخارجية المؤثرّة
في النظام ، أي وزن الكتلتين وقوّتي ردّ الفعل للسطح الأفقي ، تساوي صفرًا:

∑F ext
 = 0

dp
dt  = 0

-P
i
 = P

f

أي أنّ كمّية تحرّك النظام محفوظة .
Pi = 0 لأنّ النظام قبل حرق الخيط ساكن أماّ كمّية الحركة بعد حرق الخيط تساوي:

 P
f
 = m

1
. v’1  + m

2
. v’2

P- وبالتعويض عن المقادير المعلومة ، نحصل على:
i
 = P

f
وبتطبيق قانون حفظ (بقاء) كمّية الحركة 

 0 = m
1
. v’1  + m

2
. v’2

v’
2  = -

m
1
.v’1
m

2

 = 
-1(1.8i)

2  = (-0.9 i )m/s

قيِّم: هل النتيجة مقبولة؟. 3
سرعة الكتلة الكبيرة أقل من سرعة الكتلة الصغيرة ممّا يؤكّد أنّ النتيجة مقبولة كما أنّ الاتجّاهين المتعاكسين 

لحركة الكتلتين يؤكّدان أيضًا صحّة النتيجة .
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3 .Collisions  äÉeOÉ°üàdG
نشاهِد في حياتنا اليومية الكثير من التصادمات مثل تصادمات الآليات 

المتحرّكة بعضها ببعض ، أو تصادمها بجدران جوانب الطرقات والأعمدة ، 
أو التصادم بين كرات البلياردو .

ا تكون في خلالها القوّة  غالباً ما يستمر التصادم لفترة زمنية قصيرة جدًّ
الخارجية مهمَلة مقارنة بالقوّة الداخلية المسبِّبة للتصادم وبالتالي يعُتبرَ النظام 

المؤلفّ من الأجسام المتصادمة نظامًا معزولاً .
كذلك الحال عند انفجار جسم حيث يتفتتّ إلى مجموعة أجزاء تتناثر . 

ا وتكون  نلاحظ أنّ عملية الانفجار تحدث أيضًا في فترة زمنية قصيرة جدًّ
القوّة الخارجية المؤثرّة في النظام مهمَلة مقارنة بالقوّة الداخلية الهائلة 

المسبِّبة للانفجار ، وبالتالي يعُتبرَ النظام المنفجر أيضًا نظامًا معزولاً .
ا ، تكون  وعليه نلخّص: إذا حصلت عملية تصادم أو انفجار في فترة زمنية قصيرة جدًّ
كميّة حركة النظام محفوظة . أي أنّ محصّلة كميّة الحركة للنظام قبل التصادم تساوي 

محصّلة كميّة الحركة للنظام بعد التصادم .

4 .Types of Collisions  äÉeOÉ°üàdG ´GƒfCG
بشكل عامّ ، هناك نوعان من التصادمات:

(أ) التصادم المرن (تامّ المرونة)
يوصف التصادم بأنهّ مرن عندما تكون الطاقة الحركية للنظام محفوظة أي 
أنّ مجموع الطاقة الحركية للكتلتين قبل التصادم تساوي الطاقة الحركية 

KE
ci
 = KE

cf
للكتلتين بعد التصادم ويتمثلّ ذلك بالمعادلة الرياضية التالية: 

1
2 m

1
.v2

1
 + 12 m

2
.v2

2
 = 12 m

1
.v

1
’2 + 12 m

2
.v

2
’2

v2 هما سرعتي 
v1 و’

حيث إنّ v1 وv2 هما سرعتي الكتلتين قبل التصادم و’
الكتلتين بعد التصادم ، وسنكتشف في سياق الدرس كيفية حساب سرعتي 

الكتلتين بعد التصادم المرن . ومن خصائص التصادم المرن بين الأجسام 
أيضًا أنه لا ينُتِج تشوّهًا أو يولدّ حرارة بين الأجسام المتصادمة . يعُتبرَ تصادم 

الجزيئات الصغيرة والذرّات تصادمًا مرناً . على مضمار هوائي موضوع بشكل 
(m

2
m و

1
أفقي ، سندرس تصادمًا مرناً بين كتلتين مختلِفتين (

v على التوالي
2
vو 

1
تتحرّكان بسرعتين ابتدائيتين متجَّهتين خطيّتين  

ًّا بحلّ معادلتي بقاء كمّية الحركة وطاقة  (شكل 108) . وُجِد رياضي

v بعد التصادم .
2
و ’ v

1
الحركة أنّ سرعتيهما ’

 v'
1 = 

2m
2
v

2
 + (m

1 
- m

2
)v1

(m
1
 + m

2
)

 v'
2 = 

2m
1
v

1
 - (m

1 
- m

2
)v2

(m
1
 + m

2
)

(شكل 106)
التصادم تطبيق عملي على قانون حفظ (بقاء) 

كميّة الحركة .

(شكل 107)
إنّ تصادم كرتين من المطاّط يعُدّ تصادمًا مرناً 

حيث لا يحدث تشوهًا في شكلهما .
باختلاف اتجّاه حركة الكرات قبل التصادم ، 
هناك حفظ (بقاء) كميّة الحركة ، فهي تنتقل 
أو يعُاد توزيعها بين الكرات بدون فقدان أو 

نقصان .

ركاب مضمار هوائي

أسلاك توصيلساعة إيقاف

بوّابات ضوئية

(شكل 108)
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حالات تصادم مرنة خاصّة:
v وبتعويض 

1
 = (0)m/s إذا كان الجسم الأوّل ساكناً قبل التصادم أي
مقدارها في معادلات السرعة بعد التصادم، نحصل على: 

 v
1
’ = ;  (2m

2
)

(m
1
 + m

2
)
E v

2

 v
2
’ = ; (m

2 
-

 
m

1
) 

(m
1
 + m

2
)
E v

2

v وبتعويض 
2
 = (0)m/s إذا كان الجسم الثاني ساكناً قبل التصادم ، أي

مقدارها في معادلات السرعة بعد التصادم ، نحصل على:

 v
1
’ = ;

(m
1
 - m

2
)

(m
1
 + m

2
)E 

v
1

v
2
’ = ;

 2m
1

(m
1
 + m

2
) E v1

وبتحليل نتيجة المعادلتين السابقتين يمكننا أن نستنتج التالي:
1 . ، m

2
m أكبر من الكتلة الساكنة 

1
في حال كانت الكتلة المتحرّكة 

. v 1
ستتحرّك الكتلتان بعد التصادم باتجّاه السرعة المتجَّهة 

2 . ، m
2
m أصغر من الكتلة الساكنة 

1
في حال كانت الكتلة المتحرّكة 

m باتجّاه 
2
v فيما تتحرّك الكتلة  1

m بعكس اتجّاه 
1
سترتدّ الكتلة 

. v1 السرعة المتجَّهة
m ، نجد أنّ الكتلة الأولى بعد التصادم تصبح ساكنة . 3

1
 = m

2
أماّ إذا كانت 

’v ، فيما تتحرّك الكتلة الثانية التي كانت ساكنة بسرعة متجَّهة 
1
= (0)m/s

’v . وبالتالي نستنتج أنّ 
2
 = v

1
تساوي السرعة الابتدائية للكتلة الأولى 

ًّا من الكتلة الأولى إلى الكتلة الثانية . كمّية الحركة انتقلت كلي

(2) ∫Éãe

v تصادم في بعد واحد 
1
 = (108 i )m/s وسرعته الابتدائية m = (1.67 ^ 10-27 )kg نيوترون كتلته

كما في الشكل (109) مع جسيم ساكن كتلته ضعف كتلة النيوترون . احُسب سرعة الجسمين 
المتجَّهة بعد التصادم . اِفترِض أنّ هذا التصادم هو تصادم تام المرونة .

طريقة التفكير في الحلّ
حلِّل: اذُكر المعلوم وغير المعلوم .. 1

 m
1
= (1.67 ^ 10-27)kg المعلوم: كتلة النيوترون

 v
1
 = (108)m/s السرعة الابتدائية  

2mm

 
v

1
 = (108)m/s  

v
2
 = (0)m/s

(شكل 109)
تصادم بين نيوترون وجسم كتلته تساوي ضعف 

كتلة النيوترون .
 
m

2
 = 2m

1
كتلة الجسم الساكن   
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(™HÉJ) (2) ∫Éãe

غير المعلوم: 
سرعة الجسمين بعد التصادم 

احُسب غير المعلوم .. 2

v على المحور الأفقي (x’x) موجب . باستخدام قانون حفظ 
1
فلنفترض أنّ اتجّاه السرعة المتجَّهة 

(بقاء) كمّية الحركة وبالتعويض عن المقادير المعلومة ، نحصل على:
m

1
v

1
 = m

1
v

1
’ + m

2
v

2
’

m
1
(108 

i) = m
1
v

1
’ + 2m

1
v

2
’

   (1)      v
1
’ + 2 v

2
’ =(108i)

باستخدام قانون حفظ (بقاء) الطاقة الحركية لأنّ التصادم من النوع المرن حيث لا يوجَد فقدان في 
الطاقة الحركية وبالتعويض عن المقادير المعلومة ، نحصل على:

1
2 m

1
.v

1
2 = 12 m

1
.v

1
’2 + 12 m

2
.v

2
’2

1
2 m

1
(108)2 = 12 m

1
.v

1
’2 + 12 (2 m

1
)v

2
’2

 (2)      v
1
’2 + 2v

2
’2 = 1016

وبحلّ المعادلتين (1) و (2) نحصل على:
 v

1
’ = (-1

3 ^ 108 i )m/s

v
2
’ = (23 ^ 108 i )m/s

قيِّم: هل النتيجة مقبولة؟. 3
الإشارة السالبة لسرعة النيوترون المتحرّك بعد التصادم تدلّ على ارتداده بعد اصطدامه بكتلة ساكنة 

َّع ويؤكّد صحّة الحلّ . كتلتها أكبر بمرّتين وهذا متوق

á«FGôKEG Iô≤a

محصّلة القوّة المؤثرّة في النظام المؤلفّ من الجسمين تساوي 
صفرًا . وبتطبيق قانون حفظ (بقاء) كمّية الحركة ، نحصل على:

m
1
. v

1
 + m

2
.v

2
 = m

1
. v

1
’ + m

2
. v

2
’

m
1
( v

1
 - v

1
’ ) = m

2
( v

2
’ - v

2
)

وبما أنّ التصادم هو تصادم تام المرونة أي أنّ الطاقة الحركية للنظام 
محفوظة:

1
2 m

1
.v2

1
 + 12 m

2
.v2

2
 = 12 m

1
.v

1
’2 + 12 m

2
.v

2
’2

 12 m
1
 (v2

1
 - v

1
’2) = 12 m

2
 (v

2
’2 - v2

2
)

m
1
(v

1
 - v

1
’ ) (v

1
 + v

1
’ )= m

2
(v

2
’ - v

2
) (v

2
’ + v

2
)
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(™HÉJ) á«FGôKEG Iô≤a

ومن المعادلتين:
(1)                                   m

1
(v

1
 – v

1
’ ) = m

2
(v

2
’ - v

2
)

(2)       m
1
(v

1
 - v

1
’) (v

1
 + v

1
’) = m

2
(v

2
’ - v2

) (v
2
’ + v2

)
وبقسمة المعادلة الثانية على المعادلة الأولى ، نحصل على:

(v
1
 + v

1
’ ) = (v

2
’ + v

2
)

m ، نحصل على:
1
وبقسمة المعادلة الأولى على 
(v

1
  – v

1
’) = m2

m
1
 (v

2
’ - v

2
)

 v
2
v و ’

1
وبحلّ المعادلتين الأخيرتين نحصل على السرعتين المتجَّهتين ’

على الشكل التالي:
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(ب) التصادم اللامرن واللامرن كليًّّا
ًّا عندما لا تحُفظ الطاقة الحركية  يوصَف النظام بأنهّ لامرن أو لامرن كليّ

للنظام ، أي تتحوّل كمّية منها إلى حرارة أو تؤُديّ إلى تشوّهات في 
شكل النظام . يكون التصادم لامرن عندما ترتدّ الأجسام المتصادمة بعد 

اصطدامها بعيدًا عن بعضها البعض بسرعات مختلِفة عن سرعتها قبل 
التصادم وتكون الطاقة الحركية للنظام غير محفوظة .

ًّا إذا أدىّ التصادم إلى التحام الأجسام  ويكون التصادم لامرن كليّ
المتصادمة لتصبح جسمًا واحدًا كتلته تساوي مجموع الكتلتين ويتحرّك 

بسرعة واحدة ، وتكون الطاقة الكليّة للنظام غير محفوظة .
البندول القذفي جهاز يسُتخدَم لقياس سرعة القذائف السريعة مثل 

الرصاصة ، وقد يحتاجه محقّقو الشرطة للتحقيق في واقعة إطلاق رصاصة 
لتحديد مكان وسرعة إطلاق الرصاصة .

يقوم مبدأ عمل البندول القذفي على قوانين حفظ كمّية الحركة والطاقة 
الميكانيكية .

فالرصاصة التي تطُلقَ نحو مكعّب كبير من الخشب موجود في مستوى 
أفقي ومعلقّ بحبال خفيفة غير قابلة للشد ، تستقر داخل المكعّب وتجعله 
ينحرف بزاوية ليصل إلى ارتفاع h عن المستوى الأفقي الذي كان عليه 

سابقًا ومشيرًا إلى سرعة الرصاصة الأوّلية (شكل 110) .

äÉHÉLEG ™e ¿ÉàdCÉ°ùe

كرة كتلتها kg( 0.25) وسرعتها . 1

m/s(6) تصادمت مع كرة 

 . (0.95)kg أخرى ساكنة كتلتها

إذا كان النظام معزولاً ، احُسب 

سرعة الكرة الصغيرة بعد 

التصادم ، إذا كانت سرعة الكرة 

. (3)m/s الكبيرة
 v = (-5.4)m/s :الإجابة

بعكس اتجّاهها قبل التصادم .

كرة كتلتها g(200) تتحرّك . 2

على المحور الأفقي x'x بسرعة        
v اصطدمت 

1
 = (2 i )m/s

تصادم مرن بكرة ساكنة مماثلة 

لها . احُسب سرعة الكرتين بعد 

الاصطدام .
v'

1
 = (0)m/s :الإجابة

v'
2
 = (2)m/s  

h

M

m

(شكل 110)
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ففي الشكل (111) ، نلاحظ أنّ عربة الشحن لقطار كتلته (m) تتحرّك 
v نحو عربة ساكنة مساوية لها في الكتلة لتلتحم بها 

1
 = (4)m/s بسرعة

 . v’ بعد التصادم ، وليتحرّكا معًا كجسم واحد كتلته تساوي (2m) بسرعة 
بما أنّ محصّلة القوى الخارجية المؤثرّة في النظام تساوي صفرًا ، وبتطبيق 

قانون حفظ (بقاء) كمّية الحركة قبل التصادم وبعده:
 m

1 
v

1
 + m

2 
v

2
 = (m

1
 + m

2
)v’

 m.v
1
 + m.v

2
 = 2m. v’

v
2
 = (0)m/s ّوحيث إن

نجد أنّ:

m.v
1
 + 0 = 2m. v’  & v’ = 

m.v
1

2m  = 
v

1

2  = (2)m/s

وبحساب مجموع الطاقة الحركية للنظام قبل التصادم وبعده نجد أنهّا 
KE أكبر من 

i
غير متساوية ، فمجموع الطاقة الحركية للنظام قبل التصادم 

:KE
f
مجموع الطاقة الحركية للنظام بعد التصادم 
KE

i
 > KE

f

وبالتالي نستنتج أنهّ في خلال التصادمات اللامرنة بشكل عامّ واللامرنة 
ًّا كما هو الحال في هذا المثال ، لا يتساوى مجموع الطاقة الحركية  كليّ

للنظام قبل التصادم وبعده كما هو الحال في التصادمات المرنة .

(3) ∫Éãe

m وتتحرّك 
1
 = (0.5)kg ًّا . كتلة الكرة الأولى كرتان من الصلصال تتصادمان تصادمًا لا مرناً كليّ

m وتتحرّك نحو اليسار 
2
 = (0.25)kg (4) بينما الكرة الثانية كتلتهاm/s إلى اليمين بسرعة مقدارها

. (3)m/s بسرعة مقدارها
(أ) احُسب سرعة النظام المؤلفّ من الكتلتين بعد التصادم .

(ب) ما مقدار التغيرّ في مقدار الطاقة الحركية؟
طريقة التفكير في الحلّ

حلِّل: اذُكر المعلوم وغير المعلوم .. 1
 m

1
= (0.5)kg المعلوم: الكتلة
m

2
 = (0.25)kg  

v1 باتجّاه اليمين  = 4 i m/s  
v2= -3 باتجّاه اليسار  i  m/s  

v’ غير المعلوم: (أ) سرعة النظام بعد التصادم: ? =
ΔKE = ? :(ب) مقدار التغيرّ في الطاقة الحركية  

(أ)
(ب)
(جـ)

(شكل 111)
تصادم غير مرن

كميّة الحركة تتقاسمها العربتان .
(أ) قبل التصادم
(ب) أثناء التصادم
(جـ) بعد التصادم
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40º
50º

v‘ 1

v‘ 2

(أ)

(ب)

(شكل 112)
m

2
m و 

1
(أ) تصادم في بعدين بين 
(ب) بعد التصادم

(™HÉJ) (3) ∫Éãe

احُسب غير المعلوم .. 2

ًّا أي أنّ الكتلتين بعد التصادم قد أصبحتا كتلة واحدة وبتطبيق قانون حفظ  (أ) التصادم لامرن كليّ
(بقاء) كمّية الحركة لأنّ محصّلة القوى الخارجية المؤثرّة على النظام تساوي صفرًا ، نكتب:

m
1
.v

1
  + m

2
.v

2
  = (m

1
 + m

2
) v’

بالتعويض عن المقادير المعلومة وبالانتباه إلى اتجّاه الكمّيات المتجَّهة ، نحصل على:
0.5(4 i ) + 0.25(-3i ) = (0.75) v’

v’  = (1.67 i )(m/s)
(ب) التغيرّ في الطاقة الحركية للنظام يساوي الطاقة الحركية بعد التصادم ناقص الطاقة الحركية قبل 

التصادم:
ΔKE = KE

f
 - KE

i

KE
i
 = 12 (0.5)(42) + 12 (0.25).(32)= (5.125)J

KE
f
 = 12 (0.75)(1.672) = (1.05)J

ΔKE = KE
f
 - KE

i
= 1.05 - 5.125 = -(4.079)J

قيِّم: هل النتيجة مقبولة؟. 3
تشُير الإشارة السالبة إلى خسارة في الطاقة الحركية وهذا مقبول ، لأنّ التحام الجسمين كما نعلم 

يؤديّ إلى ظهور جزء كبير من الطاقة الحرارية وهذا ما تشير إليه النتيجة .

2-3 ¢SQódG á©LGôe

أوّلاً - اذُكر نصّ قانون حفظ (بقاء) كمّية الحركة .

ف التصادم المرن . ثانيًا - عرِّ

ًّا . ثالثًا - قارِن بين التصادم اللامرن والتصادم اللامرن كلي

m بسرعة m/s(2) بالاتجّاه 
1
 = (0.3)kg رابعًا - يتحرّك الجسم

ًّا مرناً بكتلة  الموجب على المحور الأفقي (x’x) ليصطدم تصادمًا خطي
m ساكنة .

2
 = (0.7)kg

(أ) احُسب السرعة المتجَّهة للكتلتين بعد التصادم .
(ب) احُسب المسافة التي تفصل بين الكتلتين بعد s(5. 2) من تصادمهما .

m
1
 = (200)g خامسًا - على مستوى أفقي أملس ، تصادمت الكرة

التي تتحرّك بسرعة m/s(1) على المحور الأفقي x’x بالاتجّاه 
m تصادمًا مرناً في بعدين كما 

2
 = (150)g الموجب ، بالكرة الساكنة

في الشكل (112 - أ) .
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m
1

m
2

(1)m(1)m 60º

(شكل 113)

(™HÉJ) 2-3 ¢SQódG á©LGôe

m يصنع زاوية 50º مع المحور 
1
وبعد التصادم المرن، كان اتجّاه 

m يصنع زاوية 40º إلى أسفل المحور الأفقي 
2
الأفقي (x’x) ، واتجّاه 

ح في الشكل (112 - ب) . (x’x) كما هو موضَّ
احُسب مقدار سرعة الكتلتين بعد التصادم .

سادسًا - سمكة كبيرة كتلتها kg(5) تتحرّك بسرعة m/s(1) باتجّاه 

. (1)kg سمكة صغيرة ساكنة كتلتها
(أ) احُسب سرعة السمكة الكبيرة بعد ابتلاعها السمكة الصغيرة .

(ب) كم تبلغ سرعة السمكة الكبيرة في حال كانت السمكة الصغيرة 
تسبح بعكس اتجّاه السمكة الكبيرة بسرعة m/s(4) قبل أن تبتلعها .

m
2
= (400)g وكتلة الثانية m

1
 = (200)g سابعًا - كرتان كتلة الأولى

معلَّقتان ومتزّنتان بخيطين طول كل خيط m(1) بجانب بعضهما 
البعض كما في الشكل (113) . سُحِبت الكرة الثانية بحيث بقي 
الخيط مشدودًا وصنع زاوية 60º مع الخيط العمودي ، وترُِكت 

m الساكنة .
1
للتحرّك من سكون نحو الكرة

m قبل لحظة التصادم مباشرة .
2
(أ) احُسب سرعة الكرة 

(ب) بافتراض أنّ التصادم مرن ، احُسب سرعة الكرتين بعد التصادم .
(جـ) احُسب الارتفاع عن المستوى المرجعي المارّ بمركز ثقليهما 

الذي ستصل إليه كلا الكرتين بعد التصادم .
ثامناً - أطُلِقت رصاصة كتلتها g(20) على بندول قذفي 

5) ، فارتفع مسافة )kg ساكن كتلته (Ballistic Pendulum)
 cm(10) عن المستوى الأفقي بعد أن انغرزت الرصاصة في داخله 

(شكل 114) .
(أ) احُسب سرعة الرصاصة عند إطلاقها .
(ب) هل التصادم مرن؟ اِشرح إجابتك .

(10)cm

(5)kg

m = (20)g

(شكل 114)
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ConservationبقاءRecoilاِرتداد

Elastic Collisionتصادم مرنInelastic Collisionتصادم لامرن

ًّا Perfectly Inelastic تصادم لامرن كلي
CollisionالدفعImpulse

External Forcesقوى خارجيةInertiaالقصور الذاتي  

Momentumكمّية الحركةInternal Forcesقوى داخلية

Linear Momentumكمّية الحركة الخطيّة

π°üØdG »a á°ù«FôdG QÉμaC’G

يحدث الشغل عند إزاحة جسم باتجّاه القوّة المؤثرّة . 
كمّية الحركة هي القصور الذاتي للجسم المتحرّك . 
كمّية الحركة لنظام مؤلفّ من مجموعة كتل في فترة زمنية محدّدة تساوي كمّية حركة مركز كتلة النظام  

في الفترة الزمنية نفسها .
حاصل ضرب مقدار القوّة والفترة الزمنية التي تؤثرّ فيها القوّة في الجسم يسُمّى مقدار الدفع (دفع القوّة) . 
كمّية الدفع على جسم في مدّة زمنية تساوي التغيرّ في كمّية حركة الجسم في الفترة الزمنية نفسها .  
ينصّ قانون حفظ (بقاء) كمّية الحركة على أنهّ في غياب القوى الخارجية المؤثرّة في النظام تبقى كمّية  

تحرّك النظام ثابتة ومنتظمة ولا تتغيرّ .
أثناء التصادم أو الانفجار ، تكون كمّية الحركة محفوظة دائمًا . 
تحُفظ طاقة النظام الحركية أثناء التصادم المرن . 
لا تحُفظ طاقة النظام الحركية أثناء التصادم اللامرن ، وتتحوّل كمّية منها إلى حرارة أو تؤديّ إلى تشوّهات  

في شكل النظام . 
ًّا .  التصادم الذي يؤديّ إلى التحام الأجسام المتصادمة لتصبح جسمًا واحدًا هو تصادم لامرن كليّ

المعادلات الفيزيائية: 
كمّية الحركة: 

 P = m . v  
كمّية حركة نظام مؤلفّ من كتل نقطية: 

P
system

 = ∑ P  = P
1
 + P

2
 + P

3
 + . . . + P

n
 = P

t

الدفع: 
I  = F .Δt

معادلة القانون الثاني لنيوتن: 

∑Fext
 = dP

dt  
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السرعات الخطيّة لكتلتين بعد التصادم المرن: 

 v'
1 = 

2m
2
v

2
 + (m

1 
- m

2
)v1

(m
1
 + m

2
)

 v'
2 = 

2m
1
v

1
 - (m

1 
- m

2
)v2

(m
1
 + m

2
)

π°üØdG º«gÉØe á£jôN

اِستخدم المصطلحات الموضّحة في الشكل التالي لرسم خريطة مفاهيم تنُظِّم معظم الأفكار التي احتواها الفصل .

∑F = dP
dt

أنظمة غير معزولة

أنظمة معزولة
∑F = 0

 

حفظ (بقاء) كمّية 
الحركة

تغيرّ كمّية الحركة

القوّة × الزمن الدفع

منتظمة السرعة
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ضع علامة (P) في المربعّ الواقع أمام الإجابة الأنسب لكلّ مماّ يلي:
ًّا مع:. 1  مقدار الدفع لجسم متحرّك (خلال نفس الزمن) يتناسب طردي

 الطاقة الحركية  متوسِّط القوّة
 الطاقة المرنة  متوسِّط الكتلة

 أثناء تصادم جسمين ، الكمّية الفيزيائية المحفوظة هي:. 2
 كمّية الحركة  الطاقة الحركية

 الطاقة الحركية وكمّية الحركة  الطاقة الميكانيكية
3 . :v كمّية الحركة الخطيّة لقمر صناعي يدور حول الأرض على مداره الدائري بسرعة خطيّة

 تتغيرّ في الاتجّاه على المسار  تبقى ثابتة لحفظ (بقاء) كمّية الحركة
 تتغيرّ في المقدار لتغيرّ دفع القوة  تساوي صفرًا بسبب انعدام قوة الدفع

 القوى الداخلية في النظام هي:. 4
 من الأسباب الرئيسية للتغيرّ في مقدار كمّية الحركة .

 من الأسباب الرئيسية للتغيرّ في مقدار طاقته الحركية .
 نتيجة التفاعل بين مكوّنات هذا النظام .

 من الأسباب الرئيسية لحفظ كمّية تحركه .

∂JÉeƒ∏©e øe ≥≤ëJ

أجب عن الأسئلة التالية:

هل يملك جسمان كمّية الحركة نفسها إذا ملكا مقدار الطاقة الحركية نفسه؟. 1
كيف تحمي الدفاعات المطاّطية التي تلفّ سياّرات اللعب في مدينة الملاهي الأولاد أثناء . 2

التصادم؟
ما الشرط الضروري توفرّه لتكون كمّية الحركة محفوظة؟. 3

∂JGQÉ¡e øe ≥≤ëJ

حلّ المسائل التالية:

كانت سياّرة كتلتها kg(1500) تتحرّك بسرعة km/h(120) عندما قرّر السائق إيقافها باستعمال . 1
المكابح .

(أ) هل كمّية حركة النظام محفوظة؟ اِشرح .
. 8(s) (ب) احُسب مقدار متوسّط القوّة المبذولة من المكابح لإيقاف السياّرة في خلال

جسم يتحرّك بطاقة حركية مقدارها J(150) وكمّية حركة مقدارها kg .m/s(30) . احُسب . 2
مقدار كلّ من كتلة الجسم وسرعته الخطيّة .

3 .. (30)km/s تدور الأرض حول الشمس بسرعة خطيّة مقدارها
. (6 ^ 1024)kg (أ) احُسب مقدار كمّية الحركة لمركز كتلة الأرض علمًا أنّ كتلة الأرض تساوي

(ب) هل كمّية الحركة محفوظة؟ اِشرح .
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متزلجّ على الجليد كتلته kg(60) يقف ساكناً عندما اتجّه نحوه متزلجّ آخر كتلته kg(40) بسرعة . 4
. v (12) ليمُسِك به ويتحرّكان كنظام واحد بسرعةkm/h

. v (أ) احُسب مقدار
(ب) احُسب مقدار الطاقة الحركية للنظام قبل وبعد التصادم .

(جـ) هل التصادم مرن؟ علِّل إجابتك .
5 . (100)cm (5. 2) مربوطة بخيط عديم الوزن لا يتمدّد طولهkg كرة حديدية مصمتة كتلتها

ومثبَّت بطرفه الآخر بشكل رأسي عند النقطة O فوق سطح أملس . سُحِبت الكرة ليصُبِح الحبل 
ًّا مشدودًا، وترُِكت لتتحرّك من السكون لتصطدم تصادمًا مرناً بمكعّب حديدي ساكن كتلته  أفقي

kg(5) (شكل 115) .
(أ) احُسب سرعة الكرة قبل لحظة 

اصطدامها بالمكعّب .
(ب) احُسب سرعة الكرة والمكعّب 

مباشرةً بعد التصادم .

6 .. (2)kg قوّة متغيرّة تتمثلّ بالرسم البياني التالي تؤثرّ في جسم ساكن كتلته
مستخدِمًا الرسم البياني ، احُسب:

(أ) سرعة الجسم عند نهاية الثانية الرابعة .
(ب) الدفع خلال الثانيتين الأخيرتين من تأثير القوة .

(جـ) دفع القوّة الكليّ .
(د) الطاقة الحركية في نهاية مدّة التأثير .
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F(N)

t(s)             

(5)kg

(2.5)kg O

L = (100)cm

(شكل 115)
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اكُتب مقالاً لا يزيد عن عشرة أسطر تبيِّن فيه سبب ثني المظليّ ركبتيه أثناء ارتطامه بالأرض وانقلابه 
على جنبه بدلاً من أن يرتطم بالأرض وساقاه ممدوتتان . أشِر في مقالك إلى أهمّية زمن الاصطدام 

وتأثيره في مقدار متوسّط القوّة التي تبذلها الأرض على المظليّ .

»ãëH •É°ûf

عندما يحقِّق رجال الشرطة في حادث إطلاق نار ، يحتاجون في تحقيقاتهم إلى معرفة مكان إطلاق 
الرصاصة وسرعة إطلاقها لتحديد الفاعل ، ولتحقيق هذه الغاية يستخدمون جهاز البندول القذفي .

أجرِ بحثاً تبينّ فيه ما هو البندول القذفي ، وأشِر في بحثك إلى كيفية استخدام مبدأ حفظ (بقاء) كمّية 
الحركة على البندول القذفي وأهمّيته في تحديد مكان إطلاق الرصاصة وسرعتها .

ضمِّن بحثك القوانين والمعادلات الرياضية التي تدعم ما توصّلت إليه وتؤكّد كيفية الاستفادة من 
قانون حفظ (بقاء) كمّية الحركة في حياتنا اليومية .
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